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1 Introduction

The elasticity of taxable income is among the most central parameters in public economics,

appearing as an input in many economic forecasts. It is a key statistic in models of optimal

taxation, governing the optimal asymptotic top tax rate on high earners as well as the

revenue-maximizing tax rate. One influential estimation strategy, proposed by Saez (2010),

seeks to quantify this elasticity by measuring the amount of excess bunching mass in the

income distribution around tax bracket thresholds where there is a change in the marginal tax

rate (a “kink”) or tax level (a “notch”).1

The conventional bunching estimator takes as its input the excess mass in an income

density around a tax kink or notch relative to a “counterfactual density” that would arise

if the tax were linear. This excess mass is converted into an elasticity using a bunching

estimator formula, which Saez (2010) derives using a frictionless model that predicts an atom

of excess mass at the kink. In contrast with this prediction, the bunching observed in empirical

distributions is typically diffuse, obscuring the distinction between bunching induced by tax

incentives and fluctuations in the underlying productivity distribution that would appear

even under a linear tax. A solution proposed by Chetty et al. (2011), which has become

the conventional approach, is to measure diffuse excess bunching mass as the difference

between the observed density and a smooth function fitted to the observed density outside of a

visually specified “bunching window” around the kink. Kleven and Waseem (2013) extend this

approach to notches.2 By abstracting from the source of the frictions that produce diffusion,

these approaches leave open the question of whether they successfully recover the structural

elasticity of taxable income in the presence of those frictions. Moreover, by reducing the

pattern of density distortions around the tax bracket threshold to a single number representing

excess mass, they potentially discard other useful information about taxpayers’ behavioral

responses to the kink or notch.

In this paper, we relax the assumption that agents can perfectly target income when

faced with kinks and notches in the tax schedule. We present a tractable model of income

frictions that can match key features of empirical behavior around tax kinks and notches. It

is also parsimonious, reducing the total number of model parameters by introducing a single,

informative money-metric parameter governing income frictions while eliminating the need

1For examples, see Chetty et al. (2011), Kleven and Waseem (2013), Mortenson and Whitten (2020), Rees-Jones
(2018) and others reviewed in Kleven (2016). Bunching estimation has also been applied to domains of retirement
incentives (Manoli and Weber, 2016), mobile phone services (Grubb and Osborne, 2015), and educational test
scores for both students (Diamond and Persson, 2016; Dee et al., 2019) and teachers (Brehm, Imberman and
Lovenheim, 2017), marathon times (Allen et al., 2017), and home sales (Andersen et al., 2022).

2To account for non-zero density at “dominated incomes” above the notch, Kleven and Waseem (2013) assume
a fraction of taxpayers are unresponsive, leaving unmodeled the source of diffusion in (one-sided) excess mass.
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to specify bounds for a bunching window, either visually or algorithmically.

Concretely, we consider the class of models with “sparsity-based frictions,” in which agents

choose between discrete income opportunities drawn from around the target income that

they would select in the absence of frictions. Sparsity-based frictions can arise from a range

of microfoundations including search or adjustment costs (Chetty et al., 2011; Chetty, 2012;

Kleven and Waseem, 2013; Gelber, Jones and Sacks, 2020; Mavrokonstantis and Seibold,

2022), lumpy adjustment (Rees-Jones, 2018), unpredictable bargaining outcomes (Andersen

et al., 2022), and inattention (Sims, 2003; Gabaix, 2014).3 We show that models which

generate sparsity-based frictions share a common structure and are well approximated by

a limiting case—in a sense formalized in our Proposition 3—of “uniform sparsity,” in which

income opportunities are drawn from a Poisson process with a single “lumpiness parameter”

governing the average distance between income opportunities.

The uniform sparsity model predicts rich features of empirical bunching behavior around

tax kinks and notches. Tax kinks induce “tent-shaped” (i.e., sharp-peaked and fat-tailed)

symmetric bunching, as the many taxpayers who would exactly bunch under the frictionless

model select their income opportunity nearest to the kink. This is consistent with empirically

observed patterns (cf. Saez, 2010; Mortenson and Whitten, 2020).

Tax notches, in contrast, produce asymmetric bunching in the model, with diffuse excess

mass below the notch and depressed, yet still positive, density at “dominated incomes”

just above the notch. Intuitively, although such incomes are dominated by earning at the

threshold—where effort is lower and post-tax income is higher—some taxpayers’ next-best

opportunity is sufficiently far away that an opportunity in the dominated region is preferred.

These patterns are also consistent with empirical evidence on notches, such as in Kleven and

Waseem (2013).

We use the model to assess the performance of the conventional bunching estimator when

agents face sparsity-based frictions. We first demonstrate that the conventional approach is

valid in this setting, but only under specific conditions. If both the below- and above-kink

counterfactual densities that would arise under each region’s linear tax schedules are known,

then applying the usual bunching estimator formula to the integral of diffuse excess mass

relative to these counterfactual densities recovers the true structural elasticity of taxable

income. However, commonly-applied estimation procedures that involve recovering unknown

counterfactual densities by fitting a polynomial to the observed density outside of a bunching

window can produce biased elasticity estimates in the presence of sparsity-based frictions.

This is a general challenge for the conventional approach, regardless of the model of frictions.

3See Søgaard (2019) for a review of different models of frictions in the context of labor supply adjustments and
bunching patterns.
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On simulated data generated with sparsity-based frictions, the conventional approach

underestimates the true elasticity by as much as 50 percent in some specifications, and it

produces 95 percent confidence intervals that exclude the true parameter in over 90 percent

of simulations. This mismeasurement arises from the difficulty of estimating counterfactual

densities using excluded bunching windows. In the presence of sparsity-based frictions some

bunching mass spills beyond the specified bunching window, which pulls upward the estimated

counterfactual density in the region around a kink, in turn leading to an underestimate of the

excess bunching mass and thus the elasticity.4 By structurally accounting for the predicted

shape of diffuse bunching, our proposed approach recovers the true elasticity in the presence

of sparsity-based frictions.

We apply this model to administrative tax data on individuals and small businesses in

South Africa. Several features of the South African context make it a natural setting for our

analysis. The light data requirements of the bunching estimator make it particularly well-suited

to emerging markets, where historical longitudinal data and quasiexperimental tax variation

may be scarce. Moreover, motivated by the Feldstein (1999) notion of the elasticity of taxable

income as a sufficient statistic for welfare analyses and deadweight loss, this estimation

strategy recovers the full elasticity including forces such as reporting responses and evasion,

which may be particularly relevant in developing countries. Finally, the income tax schedule

in South Africa is piecewise-linear with three prominent tax kinks for small businesses (and

more for individuals) around which taxpayers exhibit pronounced bunching behavior. Among

small businesses, we estimate elasticities in the range of 0.2 to 0.5 at the middle and upper tax

kinks, and in excess of 1 at the lowest kink. In contrast, the conventional approach estimates

elasticities to be about one half as large, consistent with the mismeasurement we document in

our simulations.

In addition to improving elasticity estimates in the presence of frictions, our approach

allows us to recover other information that is discarded by conventional bunching estimation

procedures. First, we can recover information about the quantitative magnitude of the

frictions that produce bunching using the spread of the bunching mass. Our model predicts

that for a given excess mass, and thus a given elasticity, the spread identifies the average

distance—measured in dollars—between income opportunities in the uniform sparsity model.

We find that small businesses with paid tax practitioners exhibit significantly less bunching

diffusion than other firms, suggesting that they target their incomes more precisely in response

to tax incentives. This heterogeneity is not detected by the conventional bunching estimator,

which produces statistically indistinguishable elasticities for the two groups.

4This issue is distinct from the issue of short-run vs. long-run (or “micro” vs. “macro”) elasticities, both of which
are confounded by this mismeasurement of the counterfactual density.
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Second, we can use the prediction that notches create asymmetry in the bunching mass to

gain additional insights about taxpayer behavior. Illustrating this point, both small businesses

and individuals exhibit a pattern of bunching around their bottom tax kink that looks distinctly

like the behavior expected around a notch, with diffuse mass below the bracket threshold and

a drop in the density just above it. Such “notch-like” behavior is consistent with taxpayers

perceiving a loss from earning just above the threshold, e.g., due to a hassle cost of remitting a

tax payment or a misconception that the higher marginal rate applies to inframarginal income

below the threshold.

An advantage of our approach is that we can estimate the (real or perceived) money-metric

“notch value” consistent with the degree of asymmetry in bunching behavior. We once

again find heterogeneity across firms, with firms that use paid tax practitioners exhibiting

less notch-like behavior, consistent with lower hassle costs of tax payments or a clearer

understanding of the difference between average and marginal rates. Such insights are

unavailable from the conventional bunching estimator, which requires knowing the notch

value as an input in order to identify the size of the dominated income region and the elasticity.

Although our application focuses on bunching in response to the income tax, the

approach can readily be applied in other settings with kinked or notched budget sets.

Many bunching applications study responses at thresholds for tax instruments which

combine statutory changes in marginal or discrete tax incentives with unknown—but

potentially important—changes in behavioral frictions or compliance costs. An example

is value-added-tax (VAT) exemption thresholds (as studied in Velayudhan, 2018; Liu and

Lockwood, 2015), which typically have both a known increase in the tax rate and an unknown

change in compliance costs. Estimating the elasticity with respect to the VAT rate using

conventional bunching methods requires the researcher to assume a compliance cost and

then use the residual bunching to estimate the elasticity. In contrast, our method allows both

the elasticity and the revealed-preference compliance cost to be estimated based on observed

bunching behavior.

Our approach to frictions is distinct from adjustment cost models, such as Gelber, Jones and

Sacks (2020), in which agents either pay an adjustment cost and fully reoptimize or else do not

respond at all. Such models produce predictions about bunching dynamics, in which bunching

increases over time as more agents adjust. Our static model serves as a complement to such

models, predicting diffusion even in the static (steady state) equilibrium.

In addition to building on the theoretical and empirical literature on bunching estimators

and frictions, this paper relates to two other bodies of literature. First, our findings

documenting “notch-like” behavior at statutory kink points contributes to the literature

on behavioral frictions and misperceptions about the tax code. Rees-Jones (2018) uses
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bunching behavior around the threshold at which taxpayers face a net refund or balance due in

order to quantify their degree of loss aversion. Rees-Jones and Taubinsky (2020) experimentally

study misperceptions of the income tax code, finding that a substantial share of respondents

“irons,” misinterpreting an average tax rate as the relevant marginal rate. Using exogenous

variation in worker knowledge about a notch in the Norwegian income tax system, Kostøl and

Myhre (2021) estimate that at least 30 percent of estimated optimization frictions are due to

workers’ imperfect knowledge about the tax system. Outside the domain of taxes, Ito (2014)

presents evidence that consumers respond (at the margin) to average rather than marginal

electricity prices.

Second, our empirical application contributes to the large literature quantifying behavioral

responses to taxation in developing economies. Particularly relevant is the subset of papers

estimating the elasticity of corporate taxable income (e.g., Devereux, Liu and Loretz, 2014),

which is a particularly important parameter in emerging market economies, given their greater

relative reliance on the corporate income tax base (Gordon and Li, 2009). For examples, see Best

et al. (2015) in Pakistan, Bachas and Soto (2021) in Costa Rica, and Pillay (2021), Kemp (2019),

Boonzaaier et al. (2019) and Lediga, Riedel and Strohmaier (2019) in our setting of South Africa.

The rest of the paper proceeds as follows. In Section 2, we show how sparsity-based frictions

modify the frictionless model of bunching at tax kinks and notches. We then show that a wide

range of models with sparsity-based frictions can be approximated by a limiting case of uniform

sparsity in which income opportunities are drawn from a Poisson process, and which can be

estimated using tractable computational methods. Section 3 compares the performance of our

estimation method with conventional bunching estimators using simulated data with known

underlying parameters. Section 4 presents our empirical application to South African tax data.

Section 5 concludes.

2 Model

2.1 Baseline bunching model with frictionless choice

Our starting point is the canonical “bunching estimator” presented in Saez (2010), and

illustrated in Figure 1. Taxpayers with heterogeneous productivities—for example, individuals

earning labor income or firms earning profits—choose incomes z under an income tax T (z).

The top panel of Figure 1 plots after-tax income as a function of pre-tax income; for consistency

with the bunching literature, we will refer to these as “consumption” (c) and “earnings” (z),

respectively.

Different tax schedules cause taxpayers to select different incomes, giving rise to different
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income distributions. In the example plotted in Figure 1, the linear tax T0(z) results in the

cumulative distribution function (CDF) of incomes labeled H0(z), while the linear tax T1(z)

results in the CDF H1(z). Corresponding income densities h0(z) and h1(z) are shown in the

bottom panel.

The horizontal distance between H0 and H1 quantifies the income response ∆z to a reform

from T0 to T1 at each quantile n of the distribution. Formally,

∆z(n) = H−1
1 (n)−H−1

0 (n). (1)

This definition remains well defined even if taxpayers reorder in response to the tax reform,

for example due to heterogeneous elasticities or income frictions of the kind considered in the

next section. And indeed, in the presence of such heterogeneity or frictions, the response ∆z

is generally the statistic of primary interest for policy makers, because it quantifies the fiscal

effects from tax-induced behavioral distortions. ∆z(n) can be expressed in elasticity form as5

e(n) = d ln z

d ln(1−T ′)
=

ln
(

z+∆z(n)
z

)
ln

(
1−T ′

1
1−T ′

0

) . (3)

This being a static model, the CDFs H0 and H1 should be interpreted as steady state

distributions under different counterfactual tax schedules, so that e(n) represents the long-run

response to a reform from T0 to T1.

The insight in Saez (2010) is that the observed income distribution under the piecewise-linear

income tax plotted as the kinked solid line in the top panel of Figure 1,

T (z) :=
T0(z) if z ≤ k,

T1(z) if z > k,
(4)

can provide information about the income response ∆z to a reform from T0 to T1. This logic

is illustrated in Figure 2. Suppose that each income choice is the solution to a taxpayer’s

frictionless optimization problem, so that their selected income represents a point of tangency

between their budget constraint and an upward-sloping indifference curve arising from utility

5This elasticity is a weighted average of the compensated and uncompensated elasticities of taxable income
ec (n) and eu(n):

e(n) =
(

k

z0(n)

)
ec (n)+

(
1− k

z0(n)

)
eu(n). (2)

where z0(n) := H−1
0 (n) denotes the nth quantile of the income distribution under T0 and k is the income at

which T0 and T1 intersect. This decomposition is derived formally in Kleven (2016), footnote 5, using the Slutsky
equation.
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function u(c, z) which trades off the utility of consumption against the disutility of exerting

effort to earn income. Then taxpayers who choose incomes below k under the kinked tax

schedule T face the same local budget constraint as they would under the linear tax T0, while

taxpayers earning above k under T face the same local budget constraint as they would under

the linear tax T1. As a result, theory predicts that the observed income distribution under the

kinked tax T will coincide with H0(z) at incomes below k and with H1(z) at incomes above k,

with a discontinuous vertical jump at k of magnitude

B := H1(k)−H0(k), (5)

corresponding to an atom of mass in the observed income density at k. Appendix A illustrates

this logic in the presence of a tax notch, which also produces an atom of mass at the threshold

k as well as a “hole” (density equal to zero) at incomes just above the bracket threshold which

are utility-dominated by income k.

The vertical distance B between these CDFs is related to the horizontal distance ∆z by the

following equation:

H0(k)+B = H0(k +∆z). (6)

Strictly speaking, this condition identifies the income response at a specific quantile of the

income distribution—the quantile that earns k under the linear tax T1, although applications of

the bunching estimator approach often assume that the elasticity is constant across incomes,

either globally or in a region around the kink k.

Employing equation (6), we can use a Taylor expansion of H0(z) around z = k to write B in

terms of ∆z and the local density h0(k) and its derivatives:

B = h0(k)∆z + h′
0(k)

2
∆z2 + h′′

0 (k)

3!
∆z3 + . . . (7)

If we regard terms of order exceeding h′
0(k) as negligible (i.e., if we assume the density h0(z)

is locally linear near k), then we can write the income response ∆z as an explicit function of B ,

∆z = B

h0(k)+ h′
0(k)
2 ∆z

= B(
h0(k)+h0(k+∆z)

2

) , (8)

where the second equality uses the Taylor approximation h0(k+∆z) ≈ h0(k)+h′
0(k)∆z for small

∆z. Substituting equation (8) into equation (3) yields the bunching estimator derived in Saez
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(2010).6

This frictionless model predicts an atom of excess bunching mass in the observed income

density (Figure 1, bottom panel). In contrast, such excess mass—when it is observed—is

typically diffuse, like the green density line h(z) in Figure 1 (see, for example, (Saez, 2010)).

Equivalently, observed income CDFs generally do not jump discontinuously at tax kinks;

instead, they transition gradually from H0(z) to H1(z) across a range of incomes around z, as

shown by the green CDF H(z). Such diffuse bunching is usually interpreted as evidence of

income frictions.

In the presence of frictions, the vertical distance B between the latent CDFs H0(k) and H1(k)

still quantifies the size of the key empirical parameter of interest—the steady-state income

response to a marginal tax rate increase, ∆z—according to equation (7). But in contrast to the

frictionless setting, B cannot be estimated by measuring a vertical discontinuity in the income

CDF at k.

To estimate B in the presence of frictions, Saez (2010) proposes measuring B by quantifying

the excess mass in the observed density h(z) around k. To formalize this logic, note that the

vertical distance B is identical to the integral of the excess mass in the observed density around

k,h(z), relative to the counterfactual densities h0(z) and h1(z):7

B ≡
∫ k

−∞
(h(z)−h0(z))d z +

∫ ∞

k
(h(z)−h1(z))d z. (9)

This relationship is illustrated in Figure 1, where the shaded region of excess mass in the bottom

panel is equal to B .

Although this equation provides a strategy for estimating B in the presence of frictions,

it requires knowledge of the counterfactual densities h0 and h1, one or both of which is

typically unknown. Thus much of the empirical bunching literature proposes strategies for

estimating excess bunching mass B from the observed density h(z) without full knowledge of

the counterfactual densities h0 and h1. For example, Chetty et al. (2011) proposes estimating

B by integrating over the observed density h(z) relative to an estimated counterfactual density

obtained by fitting a flexible polynomial to h(z) outside of a visually specified “bunching

window.” Kleven and Waseem (2013) extends this approach to handle notches, wherein the tax

level (and not just the marginal tax rate) jumps discontinuously at a threshold k. While these

approaches implicitly accommodate frictions by allowing for bunching to be diffuse, they leave

6To produce equation (5) in Saez (2010), rearrange equation (8) above to be ∆z = k

[(
1−T ′

1
1−T ′

0

)e
−1

]
and substitute

it into equation (3), noting that h1(k) = h0(k +∆z)
(

1−T ′
0

1−T ′
1

)e
.

7This identity follows from the fact that B = H1(k)−H0(k) = [H(k)−H0(k)]+[H1(k)−H(k)], where the bracketed
terms are equal to the two integrals in equation (9), respectively.
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the process that produces diffuse bunching unmodeled.

As we show in the next section, a more explicit treatment of the diffusion process

can improve the estimation of the bunching mass B in the presence of frictions by better

distinguishing between the diffuse bunching that is “expected” around a kink and the

underlying counterfactual densities. Moreover, by explicitly modeling these frictions and

then fitting the observed shape of the diffuse mass around a kink, we can exploit additional

information about income frictions that is discarded when the integrated bunching mass is

reduced to a scalar measure of excess mass.

2.2 A model of sparsity-based frictions

We introduce a simple modification to the static frictionless model of Saez (2010): rather than

selecting incomes from a continuum, taxpayers choose their preferred income from a sparse

set of opportunities.

This notion of “sparsity-based frictions” can accommodate a diverse set of microfoundations.

In a setting where incomes are produced by performing discrete jobs or gigs that are discovered

via a search process, the income opportunity set represents the incomes available from the set

of jobs (or combinations of jobs) that a taxpayer faces after searching with a given intensity. If an

employee works for a single employer, they may face discrete choices (“lumpiness”) over work

shifts or overtime opportunities, rather than being able to adjust their labor hours continuously.

The model can also be interpreted to allow for rational inattention, where a taxpayer learns

about the precise income that arises from each potential combination of actions—such

as claiming a specific set of tax deductions—only by paying information-gathering costs.8

Taxpayers’ action spaces could span both real responses—e.g., deciding which income-earning

opportunities to pursue—or reporting responses—e.g., a business owner deciding which of

their (lumpy) payments to realize in the current tax year, or which potentially tax-deductible

expenses to claim.9

Formally, we assume that each taxpayer faces an income opportunity set,

{
z∗+ε1, z∗+ε2, . . . , z∗+εM

}
, (10)

consisting of M income opportunities, which are offset from the taxpayer’s preferred income

8This interpretation is in line with Jung et al. (2019), who microfound the compression of an underlying
continuous distribution of actions into a lower-dimensional discrete set when information processing is costly.
Such information-gathering costs have also been used in the literatures on firm price-setting and household
trading in financial markets (Alvarez, Lippi and Paciello, 2011; Alvarez, Guiso and Lippi, 2012; Abel, Eberly and
Panageas, 2013).

9For the case of lumpy tax deductions, see Rees-Jones (2018) and also discussions in the accounting literature,
e.g., Kothari, Leone and Wasley (2005).
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z∗ by a random error term εi . We assume that the error terms are independent and identically

distributed (iid) within taxpayer type, with distribution Fε(x|n) and density fε(x|n). We call the

combination of the error distribution Fε and the number of draws M the income opportunity

process.

Taxpayers of an identical “type” (productivity, elasticity, etc.) will nevertheless choose

different incomes due to their different opportunities sets. The type-conditional density of

incomes among taxpayers of a given type is characterized by the following proposition.

Proposition 1. The type-conditional density of incomes at z̃ among taxpayers of type n with

utility u(c, z|n) under income tax T (z) is given by

g (z̃|n) = M · fε
(
z̃ − z∗(n)|n)×[

1−
∫

z∈Θ(z̃|n)
fε

(
z − z∗(n)|n)

d z

]M−1

, (11)

where

Θ(z̃|n) :=
{

z
∣∣∣u(z −T (z), z|n) ≥ u(z̃ −T (z̃), z̃|n)

}
, (12)

denoting the set of incomes that utility-dominate z̃ for a taxpayer of type n.

The logic behind this result is illustrated in Figure 3, which plots the indirect utility function

v(z|a) over income for a taxpayer of type a (see Figure 2) who faces a locally linear income tax.

The type-conditional income density at income z̃ is equal to the probability that z̃ is drawn in

the taxpayer’s opportunity set multiplied by the probability none of the taxpayer’s M −1 other

opportunities fall in the pink region of incomes that provide higher utility than z̃.

The first term in equation (11), M · fε (z̃ − z∗(n)|n), is the probability that z̃ is in an a-type’s

opportunity set—it is the probability of drawing the error value ε= z̃−z∗(n) that would produce

income z̃ multiplied by the M chances to draw that error value. The second (bracketed) term in

equation (11) represents the probability that z̃ is chosen from the opportunity set, conditional

on having drawn it. This is the probability that none of the other M −1 income opportunities

are in the region of dominating incomes,Θ(z̃|n), shaded in pink in Figure 3. Formally, when the

indirect utility function is convex, as is the case for convex preferences under a linear income

tax, then Θ(z̃|n) is the interval
[

Z (z̃|a), Z (z̃|a)
]

, where Z (z̃|a) and Z (z̃|a) are the minimal and

maximal values of z satisfying the equation v(z|a) = v(z̃|a). The type-conditional density is

maximized at the taxpayer’s target income z∗(a), at which point the set of dominating incomes

Θ(z|n) is a singleton containing only z∗(a).

Figure 4 illustrates how to extend this logic to a tax kink. Figures 4a and 4b plot the budget

constraints and indifference curves for types b and c (see Figure 2) under the kinked tax

schedule T (z). Figures 4c and 4d plot the resulting indirect utility functions for each type,

which are constructed by retaining the relevant segments of the indirect utility functions that
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would obtain under each of the linear tax schedules T0(z) and T1(z).

Figure 5 illustrates the implications for the type-conditional income densities g (z|b) and

g (z|c). The formula for the type-conditional density in Proposition 1 carries through: the effect

of the tax kink operates through its effect on the set of dominating incomes Θ(z|n), which

are again shaded as pink regions in Figure 5. Because the kink point k maximizes indirect

utility for both types b and c (and all types in between), the type-conditional income density

is also maximized at k for those types. Appendix A extends this logic to notches, where frictions

lead to diffuse excess mass in the type-conditional density below the notch threshold and a

density above the threshold that, while discontinuously lower, is still positive. This illustrates

an important contrast between the predictions of this model, in which some taxpayers choose

an income opportunity just above the notch—because all of their competing opportunities are

more distant and yield lower utility—and the frictionless model, in which the density is zero

above the notch, because it is strictly dominated by the threshold income k.

By aggregating these type-conditional income densities across the continuum of types

Fn(n), we obtain the observed income density:

h(z) =
∫

n
g (z|n) f (n)dn. (13)

If the type density is smooth and the tax schedule is linear, then the type-conditional

density effectively acts as a smoothing filter through which the type density is passed,

produce an observed density that is also smooth. But because of the diffuse nature of these

type-conditional densities, excess mass in the resulting income distribution is not concentrated

at the kink; rather it is spread out as illustrated in the left panels of Figure 6. The right panels

illustrate the effects of a notch, which produces diffuse excess mass below the notch threshold

and a depression in the income density above the threshold.

2.3 A tractable case: uniform sparsity

For a given income opportunity process—combined with usual details of a frictionless

bunching model—Proposition 1 allows us to compute numerically the observed income

distribution. In general, this computation will depend on several structural parameters—such

as the number of income opportunity draws and the parameters of the error distribution

Fε—and it may be computationally demanding.

In this section, we consider a parsimonious case, uniform sparsity, which is characterized

by only one parameter and turns out to be a good approximation for a broad range of other

income opportunity processes.

To build intuition, consider the income process simulated in Saez (1999)—the working
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paper that preceded Saez (2010)—in which taxpayers have isoelastic utility

u(c, z|n) = c − n

1+1/e

( z

n

)1+1/e
(14)

and each taxpayer draws M income opportunities from a uniform distribution of width W

centered around their target income z∗(n).10 This is a model of sparsity-based frictions with two

additional parameters relative to the frictionless model: the number of income opportunities

M and the width of the uniform distribution W from which they are drawn.

Figure 7 displays several simulated income densities that arise from this model and

variations on it, plotted in the vicinity of a tax kink.11 Panel 7a displays four simulated income

densities in which each taxpayer draws M = 1, 2, 3, or 5 income opportunities from a uniform

distribution of width W = 50,000 around their target income. When M = 1, the bunching mass

is a rectangular plateau centered around k, which is produced by the mass of bunchers who

target the income k but then draw an income opportunity that is offset from that target by

a uniformly distributed error. When M = 2, the plateau disappears and the bunching mass

approximates an inverted “V ,” reflecting that when taxpayers targeting income k face two

opportunities, they choose the one that is closer to their target. As the number of income

opportunities increases, this pattern becomes more pronounced, with a higher peak at k.

The limit of the series of densities in Figure 7a as M →∞ is the frictionless model with no

diffusion in the bunching mass. However, there is an alternative notion of a limiting case in

which diffusion remains non-degenerate. Consider the simulation in which M = 5. In this case,

taxpayers’ income choices are effectively determined by the distribution of just two income

opportunities, the lowest opportunity above their target and the highest opportunity below

their target, which dominate all other (more distant) opportunities. As a result, an income

opportunity process with M = 5 uniform draws from a window of $50,000 produces very similar

behavior to an income opportunity process with M = 10 draws from a window of W = $100,000.

Both specifications produce similar distributions over the two nearest-to-target opportunities,

which are uniformly drawn in the vicinity of the target with the same density M/W = 5/50,000 =
10/100,000 = 0.0001.

10Formally, the error distribution for this income opportunity process is

Fε(x|n) =


0 if x <−W /2,
x−W /2

W if −W /2 ≤ x ≤W /2,

1 if x >W /2.

11These simulations use tax parameters with similar nominal magnitudes to our empirical setting: the marginal
tax rate rises from t0 = 0.1 to t1 = 0.2 at the bracket threshold of k = $300,000, and we assume a locally linear density
of productivity n and an elasticity of taxable income of e = 0.3; see Section 3 for further simulation details.
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Motivated by this observation, we consider the behavior of the series of income densities

that arises when each agent draws M opportunities from a window of width M ×10,000 around

their target. Figure 7b plots this series with the same values of M as in Figure 7a. The income

density with M = 1 exhibits a rectangular plateau centered around the kink, though this time

with a width of $10,000. But as M increases—and the width W increases proportionally—the

bunching density appears to converge toward a distinctive “tent shape” with a peak at k.

The apparent convergence exhibited in Figure 7b motivates a natural question: does this

series converge to well-defined limiting density? The answer turns out to be yes, and it is this

limiting density that we call the “uniform sparsity model,” formally defined as follows.

Definition 1 (Uniform sparsity). Under uniform sparsity, the income opportunity set for each

taxpayer is a Poisson process with arrival rate λ.

Intuitively, each taxpayer draws an infinite set of income opportunities spanning the

number line. The probability of drawing any particular income opportunity is the same, with

an average of λ opportunities drawn from any $1 bin. The limiting density of the series in

Figure 7b is uniform sparsity with λ= 0.0001. (For a formal proof of this claim, see Proposition

3 below.)

Under uniform sparsity, the type-conditional density has a tractable form, as shown in the

following proposition.

Proposition 2. Under the uniform sparsity model, the type-conditional density of incomes at z̃

among taxpayers of type n with utility u(c, z|n) is

g (z̃|n) =λexp[−λ |Θ(z̃|n)|] (15)

where |Θ(z̃|n)| denotes the measure of the set of dominating incomes Θ(z̃|n), defined as in

Proposition 1.

Proof. Due to the Poisson income process, the probability that any particular income is in the

income opportunity set is a constant equal to λ. The type-conditional density g (z̃|n) is equal to

the probability that z̃ is in the taxpayer’s income opportunity set, which is λ, multiplied by the

probability that no income opportunity is drawn from the dominating income region Θ(z̃|n),

which is exp
[
−∫

z∈Θ(z̃|n)λd z
]
= exp[−λ |Θ(z̃|n)|]. Multiplying these two terms produces the

result.

The parameter λ has a natural economic interpretation: the expected distance between

adjacent income opportunities is 1/λ. We call this distance the “lumpiness” of the income

opportunity process. Greater lumpiness implies that taxpayers face a sparser set of income
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opportunities, and thus bunching around tax kinks is more diffuse. Because it is sometimes

more natural to think of these frictions as parameterized by their lumpiness rather than

its inverse, we define the “lumpiness parameter” µ := 1/λ, which has a lower bound of

0—corresponding to the frictionless model—and is unbounded above.

The convergence exhibited in Figure 7b is not unique to uniformly distributed error

terms. Figure 7c displays an analogous series of income densities in the case where income

opportunities are drawn from a normal (rather than uniform) distribution centered around the

target income. As in Figure 7b, the spread of the distribution from which income opportunities

are drawn is adjusted to preserve the density of draws in the neighborhood of the target

income—this time by rescaling the standard deviation of Fε in proportion to M . 12 As in Figure

7b, the series appears to converge quickly toward a distinctive tent shape as M increases.

Our next proposition demonstrates that this series of income densities also converges to

the uniform sparsity model as M → ∞. More generally, it shows that the uniform sparsity

model is the limit of such a series for any distribution of income opportunities with positive

continuous density around the income target, suggesting that this single-parameter model is a

parsimonious approximation for a broad class of frictions.

To formalize this statement, we begin with an arbitrary distribution of income opportunity

errors Fε(x) for which fε(0) > 0. We then define a transformation that controls the “spread”

of this distribution around the target income, F M
ε (x) := Fε(x/M), so that as M increases, the

density of opportunities around the target income, M · f M
ε (0) remains constant.13 We can then

show the following proposition.

Proposition 3. For any error distribution Fε(x) with positive continuous density at x = 0, the

income density arising from a model in which each agent draws M income opportunities offset

from their target by iid disturbances ε ∼ F M
ε converges pointwise to the density produced by the

uniform sparsity model with λ= fε(0).

The proof is presented in Appendix B.

A striking feature of Figures 7b and 7c is that these series in M converge to the uniform

sparsity model quite quickly. The simulation with just two income opportunities looks similar

12Formally, the probability density function of this error term distribution is fε(x|n) = 1
σ
p

2π
exp

[
− x2

2σ2

]
, where

σ is the standard deviation of the normal distribution from which errors are drawn. The probability of a specific
income opportunity draw being equal to z̃ is fε(x|n), and thus the probability of any of the M draws being equal

to z̃ is M · fε(z̃|n) = M
σ
p

2π
exp

[
− x2

2σ2

]
. Therefore the density of income opportunities in the vicinity of the target is

equal to M · fε(0|n) = M
σ
p

2π
. As in the case with uniform distributions above, we jointly adjust M and the spread of

the distribution—this time by adjusting the standard deviation σ—to hold constant the density of opportunities
around the target income. This amounts to scaling M and σ proportionally.

13Note that the transformations used to construct the series of densities in Figures 7b and 7c are special cases of
this general construction.
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to uniform sparsity, and the simulations with M = 3 and M = 5 are nearly indiscernible.

Panels (d)–(f) of Figure 7 reproduce the simulations in Panels (a)–(c) in the case of a tax

notch, where tax liability increases by $1000 at the bracket threshold. In Panel (d)—as in Panel

(a)—the case with M = 1 has distinctive features produced by the specifics of the uniform

distribution from which income opportunities are drawn, with the bunching mass again

having a plateau-like shape around the bracket threshold.14 As the number of opportunities M

increases, the mass develops a distinctive shape with diffuse mass to the left of the threshold

and a depression to the right. Although convergence is slightly less rapid in the case of a notch

than the case of a kink, both densities appear quite similar to the uniform sparsity model for

M = 5.

Taken together, Proposition 3 and the simulations in Figure 7 suggest that the uniform

sparsity model is a parsimonious approximation for a broad class of frictions in which taxpayers

choose their final income from a sparse set containing multiple income opportunities. This

model has a number of attractive features. First, the patterns of bunching it produces are

strikingly similar to those observed empirically in settings with tax kinks and notches. The

tent shape (high kurtosis) of the uniform sparsity specification in Figure 7b resembles both

the shape of diffuse bunching observed in canonical “bunching at the kink” papers (e.g.,

Saez, 2010; Chetty et al., 2011; Mortenson and Whitten, 2020). Similarly, the bunching pattern

around a notch in Figure 7c matches key empirical features observed in Kleven (2016), with

diffuse mass to the left of the notch and a positive (but depressed) density in the “dominated

region” to the right of the notch.15 Both types of patterns appear in our empirical setting, which

we discuss in Section 4.

Figure 7 also provides some reassurance that although the uniform sparsity model is not

entirely general—in particular, it does a poor job of approximating the income distributions

produced when M = 1—those cases are not the ones that appear to exhibit the key patterns

of empirical bunching in many settings of interest. This is particularly evident in the case of

notches, where specifications with M = 1 predict an income density that is continuous across

14In Panel (d), for M = 1, the downward slope at the left end of the plateau comes from the interaction between
the mass of bunching taxpayers who target their income at the bracket threshold k and the absence of taxpayers
targeting income in the dominated region to the right of k. When M = 1, the observed density at any particular
income is simply the average of the density of target incomes—which resembles Figure 7d—in a $50,000 window
centered at that point. At $275,000 (the left end of the plateau), this averaging window spans from $250,000 to
$300,000, across which the target income density is positive. As income increases from $275,000, the average falls
due to the absence of target incomes to the right of k. The plateau levels out again at $300,000 when the upper end
of the averaging window rises above the upper bound of the dominated income region.

15Kleven and Waseem (2013) propose an alternative model that predicts positive mass in the dominated
income range, in which a subset of taxpayers are insensitive to the presence of the notch due to adjustment or
informational frictions. Such a model explains positive density in the dominated region, but in contrast to the
uniform sparsity model, it does not predict leftward diffusion in the excess density at the bracket threshold.
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the notch threshold at k, in contrast to specifications with M > 1, which exhibit a sharp drop

in density at the notch due to the taxpayers’ endogenous selection of their preferred draw.

Empirical densities like those in Kleven (2016) clearly exhibit such a discontinuity, suggesting

they are better represented by a model with M > 1, for which the uniform sparsity model

performs well.16

A second strength of the uniform sparsity model is its parsimony. It distills the many details

underlying particular sparsity-based models of frictions—such as the parametric distribution

of income opportunities, the number of income opportunity draws, and the spread of the

distribution (controlled, e.g., by the width of the uniform distribution or variance of the normal

distribution)—into a single lumpiness parameter with a clear economic interpretation.

A third feature of the uniform sparsity model is that it has no “center,” and as a result it

can be conceptually separated from the taxpayer’s choice of target income. This is particularly

attractive in the case of notches, where a taxpayer may be indifferent between two different

incomes in the frictionless model. This case is illustrated in Figure A3, where type c is exactly

indifferent between earning two different incomes. Under a model of targeting or directed

search, this would raise the question of which of the two equally desirable incomes should be

modeled as the “target” around which opportunities are drawn. Under uniform sparsity, this

question is irrelevant, because the choice of target is inconsequential.17

The simulations above assume the isoelastic utility function in equation (14) as in Saez

(2010). In general, the model can be solved numerically for any particular specification of utility.

However, if the indirect utility function is approximated by its second-order Taylor expansion

around the target income, the model turns out to be particularly parsimonious. We impose this

approximation in the following assumption.

Assumption 1. Each taxpayer’s indirect utility over incomes under a linear tax is approximated

by its second-order Taylor approximation around their target income:

v(z|n) ≈ v(z∗(n)|n)+ v ′(z∗(n)|n)(z − z∗(n))+ 1

2
v ′′(z∗(n)|n)(z − z∗(n))2. (16)

16Allen et al. (2017) find bunching-based evidence of reference dependence around round numbers in the times
of marathon runners, consistent with a psychological payoff for recording a time under 4 hours, for example.
Notably, the bunching patterns in that paper resemble the shape of the M = 1 simulation in Figure 7f, suggesting
that marathon times are better modeled by an imperfect targeting model with a single draw—representing one’s
finish time—rather than a uniform sparsity model with multiple options from which to choose.

17This feature also allows us to sidestep the question of whether taxpayers anticipate frictions when selecting
their choice of target. In the case illustrated by Figure A2, for example, if type c is sophisticated, they would
do better to target an income slightly below the threshold k, rather than k, in order to reduce the probability of
drawing income opportunities on the “wrong side” of the notch; a naive taxpayer might instead target k, as in the
Saez (1999) uncertainty model. Since the uniform sparsity model does not require specifying a target, this issue
becomes irrelevant.
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Assumption 1 is a useful simplification because it implies that under a linear income tax,

the distance between a given income z and the taxpayer’s optimal income z∗(n) is the same as

the distance between z∗(n) and the utility-equivalent income on the “far side” of the optimum.

Appendix Figure A4 demonstrates that this approximation also produces results very similar

to the exact solution for the isoelastic utility function used in the simulations above. In the

context of Figure 3, this assumption implies that the dominating income region shaded in

pink is centered around the taxpayer’s preferred income z∗(n). As a result, the measure of the

dominating income setΘ(z̃|n) under a linear tax takes a particularly simple form:

Θ(z̃|n) = 2
∣∣z − z∗(n)

∣∣ . (17)

An implication of this result is that under Assumption 1 the dominating region Θ does not

depend on the taxpayer’s elasticity of taxable income, which governs the curvature of the

indirect utility function, because under quadratic indirect utility the incomes z∗(n) − δ and

z∗(n)+δ both generate the same utility for every δ, regardless of curvature. By Proposition 2, the

type-conditional density g (z|n) depends on a taxpayer’s type n only through the dominating

income setΘ(z|n), which in turn depends on type only through target income z∗(n), so we can

refine our notation to write the type-conditional density as g (z|z∗), where z∗ is the taxpayer’s

preferred target income under a given linear tax schedule. We will use this notation in the

remainder of the paper.

The following proposition characterizes the type-conditional density of incomes under the

uniform sparsity model and Assumption 1.

Proposition 4. Under Assumption 1, under the uniform sparsity model the type-conditional

density of incomes at z among taxpayers of type n under any linear income tax is given by

g
(
z|z∗(n)

)=λexp
[
−λ ·2

∣∣z − z∗(n)
∣∣], (18)

where z∗(n) is the taxpayer’s preferred income.

In words, because income opportunities are drawn uniformly from the number line, the

probability that no opportunity falls in the dominating region Θ(z|n) depends only on the size

of the interval, which under a linear tax is 2 |z − z∗(n)|. This probability declines exponentially

at rate λ with the size of this interval, producing a tent-shaped density function centered at

the taxpayer’s preferred income declining exponentially in both directions. This distribution is

also known as the Laplace distribution with location parameter z∗(n) and scale parameterµ(n).

This tractable analytic representation of the type-conditional density function significantly aids

the computational estimation described in Section 2.5 below.
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2.4 Identification of Model Parameters

In this Section we discuss the identification of the elasticity e and lumpiness parameter

µ in our model. We follow the approach suggested in Andrews, Gentzkow and Shapiro

(2020), separating our discussion in to 1) showing simulations of how different parameter

values generate different income densities and 2) providing an analytical proof showing

that the parameters of the uniform sparsity model are separately identified in the sense of

Matzkin (2013): for a given underlying distribution of types (equivalently, target incomes),

no two combinations of elasticity e and lumpiness µ will lead to the same observed income

distribution.

Figure 8 provides intuition for identification by plotting simulated income densities under

various combinations of values for the elasticity parameter e and the lumpiness parameter µ

in the presence of a kink and a notch. Panel (a) plots simulated income densities under the

baseline parameter values, as well as with lower and higher values of the elasticity e. A higher

elasticity raises the overall amount of diffuse bunching mass around the kink. Panel (b) holds

fixed the elasticity but varies the lumpiness parameter µ, altering the spread of the bunching

mass around the kink while preserving the total amount of excess mass. Although on first glance

the bunching masses in panels (a) and (b) might appear similar, on inspection the source of

identification is clear. A higher elasticity e and a lower µ both lead to a higher peak at the kink,

but the former achieves that higher peak by increasing the total amount of bunching mass,

while the latter holds fixed the bunching mass, and thus has a much narrower spread of excess

mass around the kink. Panels (c) and (d) plot such simulations in the presence of a notch.

In Appendix C we provide additional simulation results demonstrating the separate

identification of e and µ, and we present a proof of conditions under which separate

identification can be shown analytically. The proof proceeds in three steps. First, we

demonstrate that if h0(z)—the counterfactual income density that would be observed under

the linear tax T0(z)—is locally linear, then the corresponding density of target incomes, denoted

h∗
0 (z), is given by the same locally linear function.18 Second, we show that in a region of

constant elasticity, the leftward shift in the CDF of target incomes H∗
1 (z) is a monotonic

function of the elasticity e, and at any income above the kink, k + ε, the observed CDF H(z)

converges arbitrarily closely to the CDF H1(z) when the tax change at the kink is sufficiently

small. At this point, the integrated difference between h0(z) and the observed density h(z)

up to k + ε identifies the bunching mass B arbitrarily well, and thus the elasticity e. Finally,

18More generally, in Appendix Lemma 4 we show that if the observed density around income z under a linear tax
is equal to a polynomial function h(z̃) =α0+α1(z̃−z)+α2(z̃−z)2+ . . ., then the density of target incomes around z
is also equal to a polynomial with coefficients α∗

n =αn − αn+2
(2λ)2 . By implication, if the observed density is linear (i.e.,

αn = 0 for n > 1), then the target income density is also linear.
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we show that elasticity e and the observed density at the kink h(k) identify the lumpiness

parameter µ= 1/λ.

2.5 Estimation

We now describe how the parameters of this model can be estimated from empirical data. The

empirical strategy is to select the model parameters that maximize the likelihood of observing

a given empirical density. To do so, we search over the parameter values for the elasticity e

and the lumpiness parameter µ. If desired, we can also allow the tax notch size dT to be an

estimated parameter, treating it as a revealed feature of taxpayer behavior.

In order to estimate the model, we must impose some parametric structure on the ability

density f (n). As much of the bunching literature, (see Chetty et al., 2011) the key identifying

assumption is that the ability distribution (and thus the counterfactual income density h0(z)) is,

in a sense to be made precise, well behaved in the vicinity of the bracket threshold k. Intuitively,

this amounts to assuming that the bracket threshold is not located at a point in the income

distribution that happens to coincide with a distortion in the underlying ability distribution.19

We operationalize this identification strategy by assuming that the ability density follows a

polynomial of order Q, i.e.,

f (n|θ) = θ0 +θ1n +θ2n2 + . . . =
Q∑

q=0
θq nq (19)

for a vector θ = {θ0,θ1, . . . ,θQ }.

We then estimate the parameters of the model—e, µ, θ, and (if desired) dT —using

maximum likelihood. Letting i index the observations in the data, with Xi denoting each

observation’s income, our starting point for the likelihood function is

L(e,µ,dT,θ) =Πi h(Xi = z|e,µ,dT,θ). (20)

Performing maximum likelihood estimation with this likelihood function will not result

in an interior maximum, however, because we have imposed no constraint on the integral

of the income density function h(z|e,µ,dT,θ). For example, the solver can make equation

(20) arbitrarily high by letting the polynomial intercept θ0 become large. To address this,

we can normalize the population density within a desired range [zmi n , zmax] around the

bracket threshold (e.g., the income range reflected in the empirical support of the taxable

income distribution). In principle, we could then perform maximum likelihood estimation

19Blomquist et al. (2021) explore this identification strategy and its limitations at length. See Moore (2022) for a
discussion of what can be identified by bunching estimators without estimating the elasticity directly.
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by computationally searching for the vector (e,µ,θ,dT ) that solves the following constrained

maximization problem:

max
e,µ,θ,dT

∑
i

logh(Xi = z|e,µ,dT,θ) subject to
∫ zmax

zmi n

h(z|e,µ,dT,θ)d z = 1. (21)

This estimation can be implemented directly with raw microdata on incomes reported

to the tax authority. In many settings, however, privacy or logistical constraints restrict the

analyst to operate with a binned histogram of incomes; that is the usual data input in the

bunching literature. The approach in equation (21) can be modified for use with binned data

using interval censoring by letting i index bins (rather than observations) and replacing the

maximand in equation (21) with
∑

i Hi logh(Zi |e,µ,θ,dT ), where (Zi , Hi ) denotes the income

and frequency values for each bin i , and letting h(Zi ) denote the probability density function

from the model-predicted density at bin Zi . We adopt this modification for our estimations in

the simulations and empirical exercises that follow.

Computationally solving the constrained maximization problem in equation (21) presents

a challenge. The likelihood function is

h(z|e,µ,dT,θ) =
∫ ∞

−∞
g (z|n,e,µ,dT ) f (n|θ)dn. (22)

This is difficult because numerically integrating over a large grid of types n is time consuming,

and the parameter space is very large when allowing for even a cubic polynomial, which we

adopt as our baseline specification.

The problem can be converted into one that is numerically tractable by viewing the

selection of the polynomial coefficients θ as an inner problem that is computed conditional on

the other parameters, so that we can write the maximum likelihood problem as

max
e,µ,dT

∑
i

Hi logh(Zi = z|e,µ,θ(e,µ,dT )), (23)

with the integration constraint (21) enforced by appropriate selection of the function

θ(e,µ,dT ). If the inner function θ(e,µ,dT ) were selected to solve the constrained maximization

in equation (21), then this approach would amount to concentrating out the parameter vector

θ. For numerical expediency, we instead exploit the structure of the problem in a way that

allows us to compute θ(e,µ,dT ) very quickly using polynomial regression. In effect, we select

θ to minimize the sum of squared differences between the observed histogram (normalized to
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sum to one) and the predicted income density:

θ(e,µ,dT ) = min
θ

∑
i

(
Hi∑
j H j

−h(Zi |e,µ,dT )

)2

. (24)

To illustrate, this problem can be written in regression form as follows for the case in which

f (n|θ) is cubic, where the θ coefficients are selected to minimize the sum of squared residuals∑
i ε

2
i :

Hi∑
j H j

= h(Zi |e,µ,dT )+εi (25)

=
∫ ∞

−∞
g (Zi |n|e,µ,dT ) f (n|θ)dn +εi

=
∫ ∞

−∞
g (Zi |n,e,µ,dT )

(
θ0 +θ1n +θ2n2 +θ3n3)dn +εi

=
[∫ ∞

−∞
g (Zi |n,e,µ,dT )dn

]
θ0 +

[∫ ∞

−∞
g (Zi |n,e,µ,dT )ndn

]
θ1

+
[∫ ∞

−∞
g (Zi |n,e,µ,dT )n2dn

]
θ2 +

[∫ ∞

−∞
g (Zi |n,e,µ,dT )n3dn

]
θ3 +εi .

The terms in brackets require only a single numerical computation of g (z|n,e,µ,dT ), after

which the θ polynomial coefficients can be calculated efficiently using standard matrix

inversion. This facilitates rapidly computing equation (23) searching over only the three

parameters e, µ, and dT . The integration constraint in equation (21) can be enforced by using

a two-step procedure in which, after selecting a provisional θ vector to solve equation (24), we

adjust the intercept θ0 so that the constraint holds exactly.

In spirit, this method resembles the widely used approach—proposed in Chetty et al.

(2011)—of fitting a flexible polynomial to the observed income distribution outside of a

selected “bunching window,” although two differences should be noted. First, by structurally

accounting for the distortion pattern produced by the bracket threshold, we need not select

(visually or otherwise) an excluded “bunching window” around the threshold when computing

the best-fit values of θ. Instead, even data near the bracket threshold helps identify θ. This logic

suggests that this estimation method may be more robust to choices about the polynomial

degree Q than standard bunching estimators, where additional flexibility may attempt to fit

excess mass that spills outside the excluded bunching window. We confirm this reasoning in

simulations below.

Second, this approach assumes that the smooth polynomial structure is a feature of the

underlying ability distribution, f (n), rather than of the observed income distribution outside

the bunching window. As illustrated by Figure 1, the frictionless model actually predicts a
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discontinuity in the income density around the bracket threshold due to the jump in types and

the condensed mapping from types to income under higher marginal tax rates. By estimating

the polynomial coefficients on the type distribution directly, this approach does not impose

smoothness across that threshold.

Having implemented this maximum likelihood estimation, we can compute standard

errors for our estimates using the standard maximum likelihood estimator. In our empirical

application, we verify that this procedure produces results very similar to the standard errors

produced using a bootstrapping procedure.

3 Simulations

Using simulated data with known underlying parameters, we can assess the performance of our

proposed estimation method, as compared to the conventional approach, in the presence of

sparsity-based frictions. Given the large literature estimating elasticities from kinks, as opposed

to notches, we focus primarily on the conventional “kink-based” bunching estimators as in

Saez (2010) and Chetty et al. (2011). We discuss the application of the notch-based estimation

methods from Kleven and Waseem (2013) briefly here and in detail in Appendix G.

We specify a simulated tax kink using the same parameters as in Figures 7 and 8: the

marginal tax rate rises from t0 = 0.1 to t1 = 0.2 at the threshold k = 300,000. We simulate income

densities assuming a baseline elasticity of e0 = 0.3 and a lumpiness parameter of µ0 = 10,000,

where the “0” subscript denotes the true parameters of the data-generating process, as distinct

from model estimates of the parameters, which are denoted ê and µ̂. We construct these

simulations using linear underlying ability density, f (n|θ) = θ0 + θ1n, with θ0 = 1000 and

θ1 = −50. Each simulation uses a taxpayer population of 100,000, which produces an amount

of sampling noise similar to our empirical distributions in Figure 11. (The simulations in

Figures 7 and 8 used a much higher population size of 2 million to illustrate the shape of the

bunching mass with less sampling noise.)

We simulate these income distributions in two steps. First, we draw ability values (ni ) from

the known ability density f (n|θ) in the vicinity of the tax bracket threshold.20 For each ability

draw, we then simulate a set of income opportunities drawn from a Poisson process, from which

we choose, for each agent, the highest-utility option.21

20Specifically, we draw 100,000 values of ni between a set of bounds n and n, with the probability of drawing
any value n proportional to f (n|θ). To choose the lower bound n, we note that due to frictions, the set of agents
who earn a given z will include types whose target incomes are well below and well above z. Therefore, to simulate
the income density near the bounds of an income range

[
z, z

]
, we must draw from an ability density with target

incomes well outside that range. We choose n and n such that z∗ (
n

)= z −100,000 and z∗ (
n

)= z +100,000.
21To simulate income opportunity sets, we exploit the fact that differences between adjacent elements in a

Poisson process are iid draws from an exponential distribution with mean µ. Thus, we can construct a random
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3.1 Performance of our estimator and the conventional bunching estimator

To assess the performance of our estimation method, we simulate many rounds of data from

the same data-generating process with sparsity-based frictions, and in each case, we apply our

estimation procedure to jointly estimate ê and µ̂. We are interested in whether the distribution

of these estimates is centered around the parameters of the data-generating process e0 and µ0,

and how often the estimated confidence intervals contain the true value.

One example round of simulated data is displayed in Figure 9a. The green dots plot the

simulated income histogram. The estimated parameters ê and µ̂ resulting from our maximum

likelihood estimation are reported in the upper corner, along with the 95 percent confidence

interval for each estimate. The orange line plots the model-predicted income density under

these estimated parameter values.

We then apply the conventional bunching estimator to the same data. We implement the

estimator as described in Chetty et al. (2011), except instead of selecting a bunching window

via visual inspection, we employ the algorithmic method proposed by Bosch, Dekker and

Strohmaier (2020). The details of this implementation are described in Appendix D. Figure 9b

presents the results. The bunching window is bounded by dashed lines, and the orange line

displays the fitted counterfactual density outside that window.22 The estimated elasticity and

bootstrap-based 95 percent confidence interval is reported in the corner.

Comparing the elasticity estimates from the two methods, we note that the conventional

bunching estimator in Panel (b) underestimates the true elasticity of the data-generating

process by 25 percent. It also provides a misleading sense of precision: the 95 percent

confidence interval does not contain the true elasticity. In contrast, the sparsity-based friction

estimator in Panel (a) is close to the true value of e0 = 0.3, which is spanned by the 95 percent

confidence interval.

To compare the relative performance of these estimators more generally, we apply them to

1000 different rounds of simulated data. Figure 10a plots the histogram of elasticity estimates

from the conventional bunching estimator and from our proposed estimation method.

Consistent with the results from the single simulation round, the distribution of elasticity

estimates from the conventional bunching estimator lies substantially below the true elasticity

income opportunity set spanning an arbitrarily wide range around a type’s preferred income z∗(n) by joining a
random set of above-target opportunities, {z∗(n)+εa , z∗(n)+εa +εb , z∗(n)+εa +εb +εc , . . .}, with a random set of
below-target opportunities {z∗(n)−εi , z∗(n)−εi −ε j , z∗(n)−εi −ε j −εk , . . .}, where the ε values are iid draws from
an exponential distribution with mean µ. In the context of a kink, where indirect utility functions are concave,
only a single element must be drawn in each set, since more distant draws are guaranteed to yield lower utility.
For a notch, with non-concave indirect utility functions, a larger number of opportunities is drawn, such that each
agent’s range of income opportunities spans across the local maxima in their indirect utility functions.

22Strictly speaking, this line represents the counterfactual frequency, equal to the counterfactual density scaled
up by the bin width of the empirical histogram in order to render the plots visually comparable.
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e0. The average of elasticity estimates under the conventional approach is 0.243, and the

bootstrap-based 95 percent confidence intervals contain the true e0 in less than 10 percent of

the cases. In contrast, the distribution of elasticity estimates from our proposed estimation

method is centered around e0, with an average value of ê across these simulation rounds of

0.307. The estimated confidence intervals from our approach also provide an accurate sense

of precision: across the 1000 estimation rounds, the 95 percent confidence intervals contained

the true e0 in 95.3 percent of cases.

The downward bias in the conventional bunching estimator appears to be driven by

frictions, as illustrated by Figure 10b. To construct this figure, we reproduce distributions like

those in Figure 9a using several different values of the lumpiness parameterµ0. Figure 10b plots

the mean and the 95 percent quantile interval of each distribution at each value of µ. When

the lumpiness parameter is small—approaching the continuous-income-choice model—the

mean estimate of ê under the conventional approach is close to the true value of e0 = 0.3.

However, as µ0 rises, the conventional estimator exhibits substantial bias, underestimating the

true parameter by more than 50 percent at the highest plotted value of µ0. These estimates

also provide a misleading sense of precision: the 95 percent quantile intervals remain about

the same size as µ0 rises, and their upper bound falls far below e0. In contrast, under our

method, the distribution of ê remains centered around e0 as frictions increase. The 95 percent

quantile interval grows with µ0, reflecting the increasing imprecision in the elasticity estimate

as lumpiness increases. This imprecision accurately reflects the greater difficulty of discerning

diffuse bunching mass from underlying features of the smooth ability density when frictions

are substantial.

Why do frictions cause the conventional bunching estimator to be biased downward?

We highlight two contributing factors. The first arises because diffusion in the bunching

mass makes it difficult to distinguish excess mass from patterns in the counterfactual income

density. In the uniform sparsity model of frictions—and in many of the other sparsity-based

friction models it approximates, such as when income opportunities are drawn from a normal

distribution around the target income—there is no window outside of which the bunching

mass falls to zero. As a result, some excess bunching mass will spill over outside of any

particular bunching window—including the window chosen visually or algorithmically when

implementing the conventional approach. This spillover mass tends to “pull up” the estimated

polynomial fit in the vicinity of the kink, causing the procedure to underestimate the difference

between the observed density and the counterfactual, and hence the bunching mass. In our

model, in contrast, the distortions due to frictions are endogenously modeled throughout the

income distribution, including at points far from the threshold, and so they should not exert

an upward pull on the ability density around the threshold.

24



To explore the role of this factor in producing the bias evident in Figure 10, we note that

this source of bias should become more severe when the polynomial fit is allowed to be

more flexible. In Appendix Figure A7, we reproduce the estimates in Figure 9 with different

polynomial degrees of 1 (linear), 3, 5, and 10. Consistent with this story, Figure A7b shows

that when the polynomial degree is higher, the counterfactual density bends farther up into

the bunching mass, and the elasticity estimate is more severely biased downward. In contrast,

Figure A7a demonstrates that our proposed method continues to estimate ê close to e0 across

all polynomial degrees, suggesting that this method is robust to misspecification in the shape

of the ability density in a way that the conventional approach is not.

Although this first factor appears to play an important role in the downward bias of the

conventional bunching estimator, it does not appear to be the sole explanation, because even

the linear polynomial specification in Figure 9a produces a substantial underestimate of the

true elasticity.

The second factor contributing to downward bias in the conventional method relates to

the integration constraint imposed when estimating the counterfactual polynomial fit. The

logic for such a constraint comes from the observation that any taxpayers bunching around a

threshold must come from points to the right of the threshold under the counterfactual, and so

the total population under the actual and counterfactual income densities must be the same.23

However, as illustrated by the hollow blue points in Figure A1a, the presence of a kink may

induce taxpayers to appear inside the plotted region who were previously outside of it. In other

words, although such an integration constraint does apply to the global income density, it need

not apply within the particular region over which the bunching estimator is applied.24

To explore the role of the integration constraint, Appendix F reproduces the results

in Figure A7b using three alternative methods for fitting the counterfactual density. The

first imposes a constant counterfactual density on each side of the threshold, as in Saez

(2010). The second implements the Chetty et al. (2011) method described in Appendix D but

without the integration constraint. The third fits a separate linear density on each side of the

threshold, allowing for a break at the threshold itself. Methods 2 and 3, which were explored

23Describing the rationale for imposing the integration constraint, Chetty et al. (2011) remarks that an
unadjusted polynomial fit “. . . overestimates [the bunching mass] because it does not account for the fact that the
additional individuals at the kink come from points to the right of the kink. That is, it does not satisfy the constraint
that the area under the counterfactual must equal the area under the empirical distribution. To account for this
problem, we shift the counterfactual distribution to the right of the kink upward until it satisfies the integration
constraint.”

24Indeed, Figure A1b, which illustrates the observed income density in the frictionless model with a continuous
uniform type density, demonstrates that the kink may induce both extra mass at the kink and higher density
at incomes above the kink, in which case the true counterfactual density under T0—which extends the uniform
density below k to points above it—clearly has a lower integral over the plotted region than the observed density
does.
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in Mortenson and Whitten (2016)—the working paper that preceded Mortenson and Whitten

(2020)—substantially reduce the bias in the elasticity estimate when frictions are small to

medium. Indeed, the integration constraint appears to be the source of the (slight) downward

bias in the conventional estimator at low values of µ. At the same time, this factor does not

fully account for the downward bias in the presence of frictions, as even these specifications

without the integration constraint produce severely downward-biased elasticity estimates

when frictions are more pronounced at µ= 15 and µ= 30. They exhibit downward bias similar

in magnitude to the Chetty et al. (2011) method with the integration constraint.

3.2 Performance of the notch-based bunching estimator

We can use a similar procedure to examine the behavior of the notch-based elasticity estimator

from Kleven and Waseem (2013) (abbreviated KW) in the presence of sparsity-based frictions.

The KW estimator assumes a model of frictions that is different from the sparsity-based

frictions considered in this paper. In their model, a subset of agents are unresponsive to

the presence of the notch, explaining the presence of mass in the dominated income range

above the tax bracket threshold. The prevalence of such unresponsive agents can be found

by computing the ratio of the empirical density of taxpayers in the dominated income range

to the estimated counterfactual density, absent a notch, in that range. In such settings, this

KW “unresponsiveness share” is a non-parametric quantification of frictions. To estimate

the structural elasticity, the KW method scales up the observed excess mass to compute the

bunching that would arise if all taxpayers overcame their frictions.

Sparsity-based frictions provide an alternative explanation for the presence of taxpayers

with incomes in the dominated range. In Appendix G, we examine the behavior of the KW

notch-based estimator applied to data from simulations that assume sparsity-based frictions.

In these simulations, the KW method produces elasticity estimates that are higher than the

structural elasticity of the data-generating process. This overestimate is driven by the KW

rescaling of the bunching mass to account for unresponsive taxpayers. This arises from the

different microfoundations underlying the two approaches. In a setting with sparsity-based

frictions, mass in the dominated income range is produced by the distribution of sparse income

opportunities, rather than by a share of unresponsive taxpayers; scaling up the bunching mass

thus overestimates the structural elasticity.

In summary, our procedure complements Kleven and Waseem (2013) by providing an

additional notch-based estimator based on an alternative model of frictions. Because the

models predict somewhat different patterns of bunching around a notch, the choice between
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them can potentially be informed by the data.25

4 Empirical application

We apply our estimation method using comprehensive administrative data from the South

African Revenue Service. We apply the method to estimate the elasticity among small

businesses and individuals, studying their behaviour using data from 2014 to 2018. For

firms, we apply the method to study the distribution of reported corporate income tax (CIT)

returns around three prominent tax kinks in the Small Business Corporation tax schedule. For

individuals, we focus on the reported income distribution obtained from personal income tax

(PIT) returns around kinks in the PIT schedule. The piecewise-linear tax schedules for each

population are described below; bunching patterns around each kink are displayed in Figures

11 and 13.

4.1 Setting: small business and individual taxation in South Africa

4.1.1 Small business taxation in South Africa

Like many developing countries, South Africa relies more heavily on corporate income taxes

than most developed economies. In 2017, corporate taxes accounted for 16.2 percent of total

tax revenue in South Africa, considerably higher than the OECD average of 9.7 percent, but in

line with the average shares for Africa (18.5 percent) and Latin America (15.4 percent).26 The

South African corporate tax system is tiered, with a progressive, kinked tax schedule for “Small

Business Corporations” (SBCs), and a flat 28 percent tax applying to other (larger) resident

corporations.27 Corporate taxable income comprises gross revenues, less non-capital expenses

and incurred losses from previous tax years which can be carried forward.28 There are no local

25There are three differing predictions about the bunching mass which might be used to choose between
these models of frictions. The KW model predicts (1) tight bunching at the bracket threshold among the subset
of responsive tax payers, (2) upward-sloping density above the notch in the dominated income range, and (3)
empirical density in the dominated range that is strictly below the estimated counterfactual density. (See KW
Figure II.) The sparsity-based frictions model predicts (1) leftward diffusion in bunching at the bracket threshold,
(2) U-shaped density above the notch, and (3) empirical density in the dominated range that may be above the
counterfactual density. (See our Figure 8d.)

26Data from the OECD accessed at: https://stats.oecd.org/Index.aspx?DataSetCode=CTS_REV.
27Businesses can optionally register as an SBC if they meet a set of requirements, the most pertinent being that

their annual revenue must be below R20 million (about $1.4 million US). SBCs account for 38 percent of all formally
registered companies, although due to their smaller size, they account for less than 20 percent of total corporate
tax revenues.

28Corporate dividends are taxed at the shareholder level at a 15 percent rate. We describe the full set of eligibility
requirements, and other details of SBCs in Appendix H.
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corporate income taxes in South Africa; businesses pay income tax only at the national level.29

For the purposes of this paper, we focus on SBCs because they face a piecewise-linear kinked

tax schedule ideal for bunching estimation. The lowest bracket threshold, at which the marginal

tax rate rises from 0 to 7 percent, is located at R75,750, or about $5,260 USD in 2018.30 This

threshold moves over time with inflation. For comparison, in 2018, South African GDP per

capita was roughly $7,000 US. Below this threshold, firms face no tax liability, although they are

still legally required to file a tax return.

The middle and upper thresholds are at R365,000 and R550,000, respectively, and are fixed in

nominal terms. At the middle threshold, the marginal tax rate rises from 7 to 21 percent; at the

upper threshold, it rises to 28 percent, meaning that firms with incomes above this threshold

face the same marginal tax rate as non-SBC firms. Appendix Figure A11 (panel a) plots the

schedule for 2017, and Table A1 reports the full SBC tax schedule for each year from 2010 to

2018. For our analysis, we study the population of SBCs from 2014 to 2018—this is the period

over which the three-kink structure illustrated in Figure A11 was in place.

Figure 11 presents the histogram of taxable income amounts around each of the three kinks,

along with the model estimates described below. Pronounced bunching is visible around each

kink, with diffusion suggestive of income frictions. Interestingly, the bunching pattern around

the lowest kink is distinctly asymmetric, suggestive of the patterns typically associated with a

tax notch. We return to this point in our discussion of the results.

4.1.2 Personal taxation in South Africa

The personal income tax schedule in South Africa, like the schedule for SBCs, is piecewise-linear

and progressive. The schedule in 2017 is plotted in Appendix Figure A11 (panel b) and we

describe the rules of the personal income tax system in greater detail in Appendix H. The lowest

kink point in the schedule is framed as a standard deduction—all South Africans receive a tax

deduction equal to the amount of taxable income at the lowest threshold (R70,000 or $4,860

per annum in 2017). This means that any income below this threshold is taxed at a 0% marginal

tax rate. The brackets are adjusted each year but do not track inflation, which leads to bracket

creep across time.

Figure 13 presents the histogram of personal incomes for self-employed individuals around

each of the five kinks, along with the model estimates described in the next section. Bunching

is pronounced at the bottom two kinks, and visible (though less pronounced) at the third kink.

No bunching is discrernable at the fourth and fifth kinks. Consistent with other results in

29See Pieterse, Gavin and Kreuser (2018) for more on the South African corporate income tax data.
30Throughout the paper, we use an exchange rate of 14.4 South African rand per U.S. dollar, which was the

prevailing rate at the end of 2018.
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the bunching literature, bunching is more muted among wage earners, whose histograms are

displayed in Appendix Figure A12. Only the first kink exhibits evidence of bunching.

In the next subsection, we discuss estimates produced by the uniform sparsity model of

frictions around each of the kink points in the South African individual and small business tax

schedules, and we compare the results with those obtained using the conventional bunching

estimator.

4.2 Results

4.2.1 Results from small business tax returns

Panels (a)–(c) of Figure 11 presents the estimation of the uniform sparsity model using the

distribution of incomes from small businesses. The estimated elasticities of taxable income

are 0.27 and 0.23 at the middle and upper kinks, respectively. The elasticity estimated at the

lowest kink is substantially higher—in excess of one—consistent with the larger total excess

mass around that kink.

In addition to these elasticities, Panels (a)–(c) of Figure 11 also report the estimated

lumpiness parametersµ and the estimated notch values dT , which we treat as a model-estimated

parameter in light of the evidence that firms at the bottom kink appear to treat the bracket

threshold as-if it were a notch.

Lumpiness parameters range from R5,900 to R11,300 ($410 to $785 US). These estimates

capture the size of optimization frictions faced by firms at each tax kink. Between the lower

and middle kinks, µ increases with income, which is consistent with distances between lumpy

income opportunities increasing with total income. However, µ estimates are non-monotonic,

declining from the middle to the upper kink. As we discuss below, this pattern could arise from

heterogeneity across firms in their use of tax practitioners.

In Panels (d)–(f) we compare these elasticity estimates to those produced by the

conventional bunching estimator. Details of the conventional estimation method are described

in Appendix D. The estimated counterfactual densities in orange.31 The elasticity estimates

from the conventional estimator are roughly 30-50 percent lower than those estimated under

sparsity-based frictions, and there is no overlap between the 95 percent confidence intervals

produced by the two methods for any of the kinks. These results suggest that the concerns

raised in Section 3 about downward bias and potential imprecision of the conventional

bunching estimator in the presence of optimization frictions could be economically sizeable.

As noted above, firm behavior around the lowest kink is suggestive of a tax notch, rather

31These estimates conform closely with Boonzaaier et al. (2019), who use the conventional bunching estimator
approach to estimate income elasticities at each of these kinks.
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than a pure kink. Figure 11a shows that the estimated notch value is R340, or about $24 US,

and is highly statistically significant. The model therefore strongly rejects pure kink behavior.

Interestingly, although the bunching patterns around the middle and upper kinks are less

strikingly reminiscent of a notch, upon close inspection they also exhibit asymmetry in their

density around the bracket threshold. Consistent with this asymmetry, the model estimates

also find significantly positive notch values at these thresholds. Indeed, the notch value at the

middle kink is similar in magnitude to that at the lowest kink, although its smaller magnitude

relative to baseline income, and the lower elasticity at this kink, result in a less pronounced

asymmetry. This suggests that the behavioral tendency to treat a kink as though it were a notch

is not isolated to the lowest kink, where the tax liability changes from zero to positive, but may

be a more general phenomenon. As such, it suggests that the source of this “as-if” notch value

is unlikely pure behavioral aversion to paying a positive tax liability. Although identifying the

source of “as-if” notch behavior is beyond the scope of our analysis, such behavior would be

consistent with a subset of taxpayers mistaking the discontinuity in marginal tax rates for a

discontinuity in average tax rates, or other frictions which produce a perceived discrete cost

when one’s income surpasses each kink. In contrast, the estimated notch value at the upper

kink is small in magnitude—equal to about $3 US—suggesting that taxpayer behavior at that

threshold is not meaningfully different from that expected around a pure kink.

We next explore heterogeneity in bunching behavior across firm attributes. Specifically,

we separately estimate our model for small businesses that do and do not use a registered tax

practitioner to prepare their corporate income tax returns. Figure 12 shows plots like those

in Figure 11, partitioning businesses on their tax practitioner usage. The raw histograms

show that there is substantially more pronounced visible bunching for firms that use tax

practitioners. Table 1a reports the corresponding elasticities and other parameters, together

with the estimates for the aggregate population in Figure 11. The table shows that differences

in bunching behavior do not appear to be driven by a consistent difference in the income

elasticity between businesses that do and do not use tax practitioners. Although the estimated

elasticity is higher among firms that use tax practitioners at the lowest kink, the reverse is true

at the middle kink, and at the upper kink, the elasticities are not statistically distinguishable

from one another. That said, there is a clear and consistent difference between the lumpiness

parameters of the different groups of firms. At every one of the kinks, our method estimates

that optimization frictions are smaller for firms who use tax practitioners. This is consistent

with such firms fine-tuning their incomes more precisely in response to tax incentives, or

paying closer attention to the set of possible actions—real economic activity or reporting

behavior—which can be used to target incomes more precisely to a desired level.32

32These estimates also help to explain the non-monotonicity inµ across incomes in Figure 11. After conditioning
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Tax practitioner usage also predicts a lower “as-if” notch value: firms with paid tax

preparers treat a statutory kink less like a notch than firms that prepare their own tax returns.

If, as hypothesized above, “as-if” notch behavior is driven by average-versus-marginal tax rate

confusion, this is consistent with tax-practitioners helping firms to clear up such confusion.

This also helps explain the small size of the estimated notch value at the upper kink in the

aggregate sample (Figure 11c), which seems primarily driven by businesses with paid tax

practitioners.

In contrast with our approach, the conventional bunching estimator does not detect

this heterogeneity in behavior. Table 1b reports the income elasticities estimated by the

conventional approach at each of the three kinks. Naturally, the conventional bunching

estimator cannot estimate differences in the degree of income frictions or the “as-if” notch

value, since these parameters are not estimated by the conventional model. However, the

income elasticities estimated using the conventional approach are also indistinguishable

from one another. The behavior around the middle kink illustrates this issue. Comparing

Panels (b) and (e) in Figure 12 from the new optimization frictions approach, firms with tax

preparers exhibit a substantially—and statistically significantly—lower income elasticity than

those without tax preparers (0.26 vs. 0.50). However, Table 1b shows that the conventional

bunching estimator returns statistically indistinguishable elasticity estimates (0.13 vs. 0.11).

Put differently, optimization frictions in income adjustment may lead the conventional

approach to misinterpret heterogeneity in lumpiness or “as-if” notch behavior in a manner

that masks real differences in elasticity parameters.

We can use this heterogeneity to explore how our model estimates across subsamples

relate to the estimates produced on the full population when behavior is assumed to be

homogeneous. Consider a scenario where our population of interest is divided into two

sub-populations, one with low lumpiness (precise bunching kinks) and another subpopulation

with high lumpiness (diffuse bunching). A natural question in such a scenario is whether our

approach is able to appropriately identify the aggregate elasticity parameter in the presence

of such heterogeneity in diffusion/lumpiness. A fuller answer to this will entail analytical

extensions beyond the scope of this paper, but we provide some insight into this question using

three exercises.

First, in Appendix Table A4 reports Mean Average Percentage Errors (MAPE) between 0.20%

and 0.36% between disaggregated vs. aggregated model estimates. Put differently, the average

difference between the model fit estimated on the full sample and the model fit obtained by

on tax preparer usage, the apparent decline in µ from the middle kink to the upper kink shrinks considerably and
confidence intervals for these estimates overlap, suggesting that differences not explained by tax practitioner usage
may not be economically meaningful.
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aggregating across the two subsamples is at most 0.36 per cent, i.e., the “summed subsample”

and aggregate model fits are virtually identical.

Second, we compare the elasticity and lumpiness parameters estimated on the aggregate

sample with a weighted average of these parameters produced on the subsamples, where the

weights are the population share of each subsample. For the elasticity, the weighted subsample

elasticities are close (within the 95% confidence interval) to the elasticity estimates in the

aggregate sample. This finding is somewhat reassuring because it suggests that the aggregate

elasticity estimate is not highly sensitive to heterogeneity in lumpiness across subsamples. For

the lumpiness parameter µ, at the lower kink, we find that the “weighted average” parameter is

comparable to the µ estimated on the full distribution from the “weighted average.” However,

at the middle and upper kinks, the values for subsample-weightedµ exceed the 95% confidence

interval of the µ estimated on the full distribution. This is perhaps not surprising, given the

evident heterogeneity in diffusion that is visible in these subsample distributions.

4.2.2 Results from personal income tax returns

When applying our model estimation to personal income taxes, we estimate the model

separately for self-employed individuals and wage earners, the latter of which are known to be

less responsive to tax kinks and are described in Appendix H and Figure A12.

Figure 13 displays the histogram and model estimates for self-employed individuals around

each of the first three kinks in the personal income tax schedule, for which some bunching

appears to be evident. These individuals exhibit pronounced bunching around the first two

kinks. Like small businesses, individuals around the lower kink exhibits striking “notch-like”

asymmetry in bunching, with an evident discontinuity at the bracket threshold and missing

mass to the right. Consistent with that hypothesis, Figure A12a shows that the estimated notch

value is R310, ($22 USD), which is highly statistically significant. Accounting for this “as-if”

notch behavior, we estimate an elasticity at the first kink of 0.53. No discernable bunching

is apparent above the third kink—consistent either with a low elasticity or a high degree of

lumpiness. We perform a similar estimation for wage earners around the first kink—the only

kink at which bunching is evident—which again suggests “as-if” notch behavior (Figure A12).

5 Conclusion

This paper extends the theory underlying bunching-based elasticity estimators to incorporate

a positive model of frictions, and it provides new estimation methods to recover elasticities

in the presence of such frictions. We consider a general class of sparsity-based frictions in
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which taxpayers select their preferred option from a sparse set of opportunities, which can be

microfounded using a variety of models including directed search, limited attention, and lumpy

adjustment. We show that many models within this class of frictions are well approximated by a

parsimonious limiting case in which opportunities are drawn from a Poisson process governed

by a single “lumpiness” parameter, which quantifies the expected distance between adjacent

opportunities. This model predicts key patterns observed in empirical bunching settings, such

as diffuse bunching around kinks and positive mass above notches.

Simulations suggest that conventional bunching estimation techniques exhibit limitations

in the presence of sparsity-based frictions, tending to underestimate the bunching mass and

elasticity while producing overly precise confidence intervals. We propose an alternative

estimation method that recovers unbiased elasticity estimates in simulated data. We show that

this approach can be used to draw novel economic insights. When we apply this method to

administrative tax data on small firms and individuals around kinks in both the corporate and

personal income tax schedule in South Africa, we find evidence that both firms and individuals

treat the lowest tax kink like a notch, and we estimate substantially lower income frictions

among firms with paid tax preparers, consistent with finer income targeting among that group.

By quantifying the extent of frictions, our approach allows us to recover the “as-if” notch value

when taxpayers treat a kink like a notch.

Although we focus on the setting of earned income, the model and methods presented here

are versatile. Our proposed bunching estimator can be applied to estimate behavioral

responses in other settings with kinked budget sets, including with non-income tax

instruments, nonlinear pricing schedules, or non-monetary payoffs. More generally, the

model of uniform sparsity, as an approximation of sparsity-based frictions, can be extended to

a wide range of settings, including multidimensional choices.
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Figure 1: Income Distributions and Densities Under a Kinked Tax Schedule
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The top panel shows a taxpayer’s budget constraints under two linear income tax functions, T0(z) and T1(z). These
can construct a “kinked” tax schedule (with resulting budget constraint plotted by the solid line) consisting of
T0(z) and T1(z) below and above income k, respectively. The middle panel plots the income CDFs H0(z) and
H1(z) that would arise under each linear tax functions. Absent frictions, the CDF under the kinked tax schedule
coincides with H0(z) below k and with H1(z) above k, with a discontinuous jump B at the threshold k. With
frictions, the transition from H0(z) to H1(z) around the kink at k is gradual, as plotted by the CDF labeled H(z).
The bottom panel plots the income densities h0(z), h1(z), and h(z), corresponding to the CDFs H0(z), H1(z), and
H(z), respectively.
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Figure 2: Frictionless bunching model with a progressive tax kink

(a) Income choices under a linear tax
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This figure illustrates the income choice around a tax kink under the conventional frictionless model. Panel (a)
illustrates the optimal choice of income, z∗, for four selected types of taxpayers under a linear income tax. Panels
(b), (c), and (d) illustrate the optimal choice for each type under a kinked income tax, where the tax changes from
the T0(z) to T1(z) at the threshold k. Incomes z∗

0 and z∗
1 denote the optimal choice under the linear tax T0(z) and

T1(z), respectively.
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Figure 3: Type-conditional income density under a linear tax (type a)
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This figure illustrates the calculation of the type-conditional income density in the uniform sparsity model among
a-type agents at a particular income level z̃, under a locally linear income tax. The top portion plots the taxpayer’s
indirect utility function over incomes. An agent who has z̃ in their income opportunity set will select this income iff
they do not have some other income opportunity in the shaded “dominating region.” The type-conditional density
g (z̃|a) is equal to this conditional probability multiplied by the probability of drawing z̃.
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Figure 4: Utility from income choices around a tax kink

(a) Budget constraint (type b)
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Panels (a) and (c) illustrate the construction of the indirect utility function around a progressive tax kink for the
marginal non-buncher (type b). Panel (a) shows the taxpayer’s budget constraint, plotted as a solid line, where
T0(z) and T1(z) are the linear income taxes below and above the bracket threshold k, respectively. Panel (c) plots
the indirect utility functions v0(z|b) and v1(z|b), which would be obtained if the linear tax functions T0(z) or T1(z)
applied across all incomes. Type b’s indirect utility function under the kinked tax schedule, plotted as a solid line,
is given by v0(z|b) below k and v1(z|b) above k. Panels (b) and (d) show analogous illustrations for the marginal
buncher (type c). This taxpayer’s optimal frictionless income choices under the linear taxes T0(z) and T1(z) are
denoted z∗

0 (c) and z∗
1 (c).
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Figure 5: Type-conditional income density around a kink
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This figure illustrates how the indirect utility functions from Figure 4 are used to compute the type-conditional
income densities. The panels show the calculation for the marginal non-buncher (Panel (a)) and the marginal
buncher (Panel (b)). Each panel illustrates the calculation of the type-conditional income density g (z|n) at a
(different) income z̃. We first identify the range of incomes that dominate z̃ for each taxpayer, corresponding
to the horizontal dashed line, and we proceed as in Figure 3. The type-conditional densities are plotted in purple.
For reference, the type-conditional density under the counterfactual linear taxes T0(z) and T1(z) are plotted in blue
and in red, respectively.
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Figure 6: Aggregating type-conditional densities into an observable income density
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The top left panel of this figure shows the optimal frictionless income choice for agents of types a, b, c, and d in the
presence of a kink at k, with each type’s maximal indifference curve plotted in a different color. The panel below
it illustrates the type-conditional income densities in corresponding colors. Summing across the type-conditional
densities of these and the continuum of intervening types produces the observed income density, h(z), which
exhibits diffuse bunching around the bracket threshold. The counterfactual income density h0(z), which would
be observed under the linear tax function T0(z), is plotted in gray for reference. The top right panel shows the
analogous construction for a tax notch, with the resulting observed income density plotted below.
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Figure 8: Simulated effects of parameter variations on income densities

(a) Different elasticities (kink)
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(b) Different lumpiness parameters (kink)
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(c) Different elasticities (notch)
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(d) Different lumpiness parameters (notch)
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This figure plots income histograms from simulated data sets under the uniform sparsity model of frictions. For
each simulation, we draw agents from an ability distribution with a linear density. We assume agents have a
homogeneous income elasticity, e0, and for each agent we then draw a sparse set of income opportunities from
a Poisson process with a specified lumpiness parameter, µ0. Each agent chooses the income opportunity that
delivers the highest utility. We bin the resulting incomes to construct the income histograms displayed above.
Panels (a) and (b) display simulated income histograms around a progressive tax kink for different values of e0 and
µ0, respectively. Panels (c) and (d) display histograms around a tax notch. In each case, the marginal tax rate rises
from 0.1 to 0.2 at $300,000, and for the notch simulations in in Panels (c) and (d), the level of tax liability increases
by $1000.
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Figure 9: Parameter estimates from simulated data

(a) Sparsity-based frictions estimator for a single simulation round
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(b) Conventional bunching estimator for a single simulation round
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This figure displays the estimation of the maximum likelihood model and the conventional bunching estimator
for one round of simulated data. The simulation is constructed as in Figure 8, with a true elasticity of e0 = 0.3 and
a lumpiness parameter of µ0 = 10, but using a smaller number of drawn observations (M = 100,000) to produce
a level of sampling noise similar to that in our empirical application in Section 4. Panel (a) displays the results of
applying the our maximum likelihood estimation method described in Section 2.5. Estimates of ê and µ̂ and their
95 percent confidence intervals are reported in the upper corner. Panel (b) illustrates the conventional bunching
estimator, applied to the same round of simulated data, resulting in an elasticity estimate well below the true value
e0 = 0.3. The vertical dashed lines display the algorithmically selected bunching window, and the orange line plots
the best-fit polynomial to the data points outside the bunching window.
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Figure 10: Elasticity estimates using the conventional approach

(a) Distribution of elasticity estimates under each approach
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(b) Elasticity estimates under each approach for different lumpiness parameters
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Panel (a) plots the histogram of elasticity estimates under the conventional approach (orange) and the maximum
likelihood method allowing for frictions (blue). The vertical line at e0 locates the true elasticity of the data
generating process used to construct the simulated data sets. To construct Panel (b), we produce histograms
like those in Panel (a) using simulated data with several different lumpiness parameters, holding fixed the true
elasticity. Panel (b) displays the mean and 95 percent confidence intervals for the distribution of elasticity
estimates in each case.
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Table 1: Estimated bunching parameters: small business income tax

(a) Parameter estimates from model with frictions

Elasticity of taxable income (e)
Lower Middle Upper

Full population 1.75 (1.72, 1.79) 0.27 (0.24, 0.31) 0.23 (0.19, 0.28)
Without tax practitioner 1.39 (1.29, 1.48) 0.50 (0.34, 0.67) 0.28 (-0.05, 0.62)
With tax practitioner 2.11 (2.07, 2.15) 0.26 (0.21, 0.30) 0.26 (0.22, 0.31)

Lumpiness parameter (µ), in ZAR 1000s
Lower Middle Upper

Full population 5.9 (5.7, 6.1) 11.3 (9.1, 13.5) 6.6 (4.7, 8.5)
Without tax practitioner 7.3 (6.8, 7.8) 28.6 (19.5, 37.8) 27.2 (-6.3, 60.6)
With tax practitioner 5.2 (5.0, 5.4) 9.5 (7.0, 12.1) 6.4 (4.6, 8.2)

As-if notch value (dT ), in ZAR 1000s
Lower Middle Upper

Full population 0.34 (0.33, 0.36) 0.31 (0.25, 0.37) 0.04 (0.02, 0.07)
Without tax practitioner 0.44 (0.41, 0.48) 0.48 (0.28, 0.67) 0.35 (-0.08, 0.78)
With tax practitioner 0.30 (0.29, 0.31) 0.28 (0.19, 0.37) 0.04 (0.01, 0.06)

(b) Parameter estimates from conventional bunching estimator

Elasticity of taxable income (e)
Lower Middle Upper

Full population 1.23 (1.14, 1.33) 0.14 (0.12, 0.16) 0.15 (0.11, 0.18)
Without tax practitioner 0.76 (0.66, 0.87) 0.11 (0.08, 0.15) 0.10 (0.06, 0.15)
With tax practitioner 1.51 (1.37, 1.65) 0.13 (0.11, 0.15) 0.14 (0.11, 0.17)

Panel (a) reports our maximum likelihood estimates of the elasticity of taxable income (e), the average distance
between income adjustment opportunities (µ) and the revealed preference (“as-if”) value of the change in tax
liability at each bracket threshold. The values of µ and dT are measured in ZAR 1000s. Results are reported
separately for the aggregate population, and for the subset of firms who do and do not use paid tax practitioners to
prepare their tax returns. Panel (b) reports the estimated elasticity (e) from the conventional bunching estimator,
using the method based on Chetty et al. (2011) and described in Appendix D.
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Online Appendix

Diffuse Bunching with Frictions: Theory and Estimation

Santosh Anagol, Allan Davids, Benjamin B. Lockwood, Tarun Ramadorai

A Details of Bunching in the Presence of a Tax Notch

Figures A1–A3 illustrate details of the bunching model around kinks and notches in the

frictionless model and with sparsity-based frictions.

Figure A1 illustrates bunching patterns that arise from a kink (panels a and b) or a notch

(panels c and d) in a model without income frictions. The left panels a and c illustrate the

choices of individual types of taxpayers, each of whom is depicted by a discrete dot. The

right panels translate this discrete choice behavior into income densities with a continuum of

types. In the presence of a kink, the frictionless model predicts an atom of mass at the bracket

threshold with smooth densities on either side, generally with a discontinuity at the threshold

due to the leftward shift and income compression of taxpayers who face the higher marginal

tax rate above the threshold. In the presence of a notch, the model again predicts an atom of

mass at the threshold and a smooth density to the left, but with an absence of mass (density

equal to zero) in a dominated region of incomes just above the bracket threshold.

Figures A2 and A3 are analogous to Figures 4 and 5 in the paper, but in the presence of

a notch rather than a kink. The notch in the budget constraint produces a discontinuity

in the indirect utility functions plotted in Figures A2c and A2d. For illustrative purposes,

type c is selected to be the type that is just indifferent between two levels of income, k and

their optimal income choice under T1(z). (This is distinct from Figure 6 in the paper, where

type c strictly prefers k.) As illustrated in Figure A3, the logic of Proposition 1 again carries

through—the type-conditional density scales with the probability of drawing an income

opportunity inside the shaded region of dominating incomes—although the notch sometimes

produces a set of dominating income Θ(z|n) consisting of disjoint intervals, as shown in A3b.

Under sparsity-based frictions, type-conditional densities exhibit positive density even in the

so-called “dominated region” to the right of the notch because for some taxpayers an income

opportunity in that region may be preferable to all of their other opportunities.

1
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B Proof of Proposition 3

The simulations of bunching around a kink in Figure 7, panels (a)–(c), share a common

structure. Agents draw an opportunity set consisting of M opportunities

{z1, z2, . . . , zM } = {
z∗+ε1, z∗+ε2, . . . , z∗+εM

}
, (26)

where the ε are iid random draws from a particular distribution—uniform in panels a and b,

and normal in panel c—which we can more generally denote Fε, with density fε. Note that the

probability of drawing some particular income z̃ for some specific income opportunity, such as

z1, is fε(z̃−z∗), and so the probability of drawing z̃ among any of the M opportunities is M fε(z̃−
z∗). Throughout this proof, we often suppress the dependence on agent type n to simplify

notation.

A key observation is that choice behavior is determined by the opportunities nearest

to an agent’s target, i.e, the lowest positive ε—because all higher income opportunities are

dominated by that draw—and the highest negative ε–because all lower income opportunities

are dominated by that draw). We can view these two draws as a pair of order statistics, of a sort.

The ultimate income density will depend solely on the distribution of these order statistics.

The number of draws M , and the underlying distribution from which opportunities are drawn

(i.e., the distribution of Fε) are consequential only through their effect on these order statistics.

The order statistics themselves are straightforward to compute. The probability that z∗+ε j

is the agent’s preferred opportunity is simply the probability of drawing z∗+ε j —which is just

fε(ε j )—times the probability that z∗+ε j is the best available opportunity, i.e., the probability

that every other drawn opportunity is less desirable.

For ε j > 0, another income opportunity z∗ + εk is less desirable if either εk > ε j or z∗ +
εk < Z (z∗+ε j ), with Z (·) (defined as in the text) indicating the utility-equivalent income to

z∗+ε j below the target z∗. Conditioning on the agent’s type and utility function, let φ(ε) and

φ(ε) denote the functions that compute the lower and upper utility-equivalent disturbances

from z∗ that deliver the same utility as a given disturbance ε, so that Z (z∗+ε)− z∗ = φ(ε) and

Z (z∗+ε)− z∗ =φ(ε) for all ε.

Therefore the order statistic of interest—the probability that z∗+ε j is the agent’s preferred

opportunity—is

M fε
(
ε j

)[
1−

(
Fε

(
ε j

)−Fε
(
φ

(
ε j

)))]M−1
(27)

in the case of ε j > 0, and it is

M fε
(
ε j

)[
1−

(
Fε

(
φ

(
ε j

))−Fε
(
ε j

))]M−1
(28)

2
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in the case of ε j < 0. Together, these equations characterize the type-conditional income density

at a given income, which we can write as

g
(
z∗(n)+x|n)

:= M fε
(
ε j

)[
1−

(
Fε

(
φ (x)

)
−Fε

(
φ (x)

))]M−1
. (29)

This characterizes the probability that agents of type n earn income z∗(n)+ x, where x is the

distance above or below n’s target income. We have used the fact that φ(ε j ) = ε j when ε j < 0

and φ(ε j ) = ε j when ε j > 0 by construction to combine the preceding equations.

Evaluating equation (29) at x = 0 gives g (z∗(n)|n) = M fε(0), the local density of opportunity

draws around the agent’s target income z∗. Section 2.2 provides heuristic logic suggesting that

this local density is a sort of “sufficient statistic” for the income opportunity process, in the

sense that a broad range of opportunity processes with the same local density of draws around

the target income are approximated by the same type-conditional income density. Figures 7b

and 7c illustrate this phenomenon for two parametric forms of the distribution Fε (uniform and

normal) and then adjusting that distribution to hold fixed the opportunity density M fε(0) while

raising M , from which we observe apparent convergence as M →∞.

Here, we formalize and generalize that argument. We allow Fε to be any distribution

with a positive continuous density around zero, so that the probability of drawing income

opportunities around the agent’s income target is positive. We then define the following

transformations of Fε and fε:

F M
ε (x) := Fε

( x

M

)
, (30)

with density

f M
ε (x) := 1

M
fε

( x

M

)
. (31)

The series of transformations densities underlying the simulations in Figure 7b and 7c are

special cases of this general transformation. The transformation is constructed to adjust the

spread of the distribution Fε in a way that holds fixed the local density of opportunities around

the target income, M fε(0). The transformation also preserves F M
ε (0), meaning that the target

income remains at the same quantile in the distribution from which income opportunities are

drawn. We call F 1
ε (x) = Fε(x) the unitary distribution. In keeping with the lumpiness parameter

we define in the text, we will call this constant value fε =λ= 1/µ.

Regarding F M
ε and f M

ε as any particular distributions from which M opportunities are

drawn, equation (29) provides the type-conditional income density, which we now index by M :

g M (
z∗(n)+x|n)

:= M f M
ε (x)

[
1−

(
F M
ε

(
φ (x)

)
−F M

ε

(
φ (x)

))]M−1
. (32)

Substituting the definitions from equations (30) and (31), this equation can be rewritten in

3
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terms of the unitary distribution:

g M (
z∗(n)+x|n)= fε

( x

M

)[
1−

(
Fε

(
φ(x)

M

)
−Fε

(
φ(x)

M

))]M−1

. (33)

We are interested in the limit of this function g M (z|n) as M →∞. Employing the assumption

that Fε(x) is differentiable at x = 0, the definition of the derivative implies

lim
x→0,y→0

Fε(x)−Fε(y) = fε(0)(x − y) for x ̸= y.

Therefore letting x =φ(x)/M and y =φ(x)/M and noting fε(0) =λ, we have

Fε

(
φ(x)

M

)
−Fε

(
φ(x)

M

)
=λ ·

φ(x)−φ(x)

M
.

Substituting this result into equation (33) gives

g∞ (
z∗(n)+x|n)=λ

1−λ ·
φ(x)−φ(x)

M

M−1

(34)

=λexp
[
−λ

(
φ(x)−φ(x)

)]
, (35)

where the final line follows from limM→∞(1 − r x/M)M = e−r x , the definition of continuous

exponential decay.

Using the definitions of φ and φ, we can write this as the type-conditional density among

taxpayers of type n as a function of income z̃:

g∞(z̃|n) =λexp
[
−λ ·

(
Z (z̃)−Z (z̃)

)]
. (36)

Noting that in this setting the set of dominating incomes, Θ(z̃|n), is the interval
[

Z (z̃), Z (z̃)
]

,

and thus the measure of this set is |Θ(z̃|n)| = Z (z̃)− Z (z̃). Substituting this into equation (36)

produces the type-conditional density of the uniform sparsity model as in Proposition 2. This

demonstrates that any income opportunity process with continouous positive density around

the target income converges to the uniform sparsity model with λ = fε(0) as M →∞, proving

Proposition 3.
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C Separate Identification of Income Elasticity and Lumpiness

Parameter

Here we discuss the separate identification of the income elasticity e and the lumpiness

parameter µ, both numerically using simulations and analytically in the form of an analytic

proof.

Figure A5a plots the joint distribution of estimates (ê, µ̂) for the 1000 simulation rounds

underlying Figure 9a. The histogram of each marginal distribution is displayed outside of each

axis. A number of notable features emerge. First, for both ê and µ̂, the distribution of estimates

is centered around the true parameter value. Averaging across simulation rounds, and the

average value of µ̂ is 10.1 (measured in 1000s), close to the true values of e0 = 0.3 and µ0 = 10.

Second, the spread of both distributions provides an indication of sampling error. In

each round of simulated data, the maximum likelihood estimation procedure also provides

a standard error estimate, and so a key question is whether this estimate gives an accurate

picture of the degree of precision in the estimate. To explore this, we can compare the standard

deviation of the distribution of ê estimates, which is 0.026, to the average estimate of the

standard error, which is 0.026, indicating that the maximum likelihood estimate of the standard

error provides a good sense of the true degree of sampling uncertainty. In the case of µ, the

standard deviation of the distribution of µ̂ is 1.121, and the average value of the estimated

standard error is 1.099.

A third notable feature of Figure 9a is the upward slope in the cluster of joint estimates. This

indicates that when ê is overestimated due to sampling bias, it is likely that µ̂ is overestimated

as well. To explore this phenomenon, Figure 9b plots model-generated income densities for

five combinations of (e,µ). The thick solid line plots the baseline density with e = 0.3 and µ =
10. The other four lines correspond to the (e,µ) pairs corresponding to the four square-shaped

points in Figure 9b.

In Figure 9b, the densities corresponding to the points to the northwest and southeast of

the baseline are easy to visually distinguish from the baseline, exhibiting substantially lower

and higher densities at the kink, respectively. The reason for this pattern can be understood

from the simulated densities in Figure 8. A higher elasticity e increases the density at the kink

point by raising the total amount of bunching mass (Figure 8a). A lower value of the lumpiness

parameter also increases the density at the kink point, by concentrating the excess mass more

tightly around the kink (Figure 8b). Thus, the parameter combinations to the southeast of

the baseline in Figure 9b correspond to densities with substantially higher density around the

kink point, like the tallest density displayed in Figure 9b. The reverse is true for parameter

combinations to the northwest of the baseline values, where the levels of both parameters

5
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(low e and high µ) reinforce each other to push down the density at the kink. In contrast,

parameter combinations to the northeast and southwest of the baseline have opposing effects

on the density at the kink. They are still distinct, indicating that the model is identified, but their

difference is more subtle, involving the density at intermediate points in between the kink point

and the bounds of the income window. The pattern of points in Figure 9b corresponds to this

visual impression: in the presence of sampling error, it is easier to distinguish—in a statistical

sense—between data-generating processes with parameter pairs on the northwest-southeast

axis than those on the northeast-southwest axis in Figure 9b.33

In sum, these points paint a clear picture of the performance of the maximum likelihood

estimator when the model is correctly specified. Estimates of the elasticity and the lumpiness

parameter appear consistent in that they are distributed around the true parameters of the

data-generating process, and standard errors estimated by maximum likelihood are very close

to the standard deviation of the distribution of estimates. They also highlight an important

aspect of this model: estimation error in e and µ are likely to have the same sign. This result

has important implications for the comparison of this model to the conventional elasticity

estimator based on bunching mass.

We now show a related analytic result. Under the uniform sparsity model, for a given

observed income density h(z) and counterfactual density h0(z), if the target income response

∆z (which identifies the elasticity e) and sparsity parameter λ are constant in a sufficiently

wide region around the tax kink, then ∆z and λ are separately identified.34

For this proof, we invoke the quadratic Taylor approximation from Assumption 1, which

we maintain for the remainder of this section. As noted in Section 2.3, under this assumption

each taxpayer’s target income z∗ (under a specified linear income tax) is a sufficient statistic for

their type n, and thus we can index types by z∗ rather than n. Therefore we will derive all results

below in terms of the distribution of target incomes, which we denote H∗
i (z), with density h∗

i (z),

for a given linear tax Ti (z).

We now show how the counterfactual income densities h0(z) and h1(z) are related by the

following lemma. This relationship must be shown—rather than following immediately from

the definition of ∆z—because although the income response ∆z determines the shift of the

target income distribution due to the tax reform, the realized income distribution differs from

the target distribution due to frictions.

33Put differently, the estimator that we propose would find it easier to distinguish between data generated from
“low e, high µ” and “low µ, high e” combinations than between “low µ, low e” and “high µ, high e” combinations.

34Note that our simulations in the paper assume a constant elasticity e, whereas for analytic simplicity this proof
assumes a constant target income response ∆z in levels. The two assumptions are quantitatively similar provided
the region of bunching is small relative to the level of income at the kink k.
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Lemma 1. With constant target income response ∆z in the vicinity of k, the counterfactual

income CDFs and densities satisfy

H0(z) = H1 (z −∆z) (37)

and

h0(z) = h1 (z −∆z) . (38)

Proof. From equation (13)—though written using target incomes to index types—and

Proposition 4, we can write the observed income CDF under T0(z) as

H0(z) =
∫ z

z̃=−∞
h0(z̃)d z̃ =

∫ z

z̃=−∞

∫ ∞

z∗0 =−∞
λ

[−λ ·2
∣∣z̃ − z∗

0

∣∣]h∗
0 (z∗

0 )d z∗
0 d z̃. (39)

Similarly we can write

H1(z) =
∫ z

z̃=−∞
h1(z̃)d z̃ =

∫ z

z̃=−∞

∫ ∞

z∗1 =−∞
λ

[−λ ·2
∣∣z̃ − z∗

1

∣∣]h∗
1 (z∗

1 )d z∗
1 d z̃, (40)

and therefore

H1(z −∆z) =
∫ z−∆z

z̃=−∞

∫ ∞

z∗1 =−∞
λ

[−λ ·2
∣∣z̃ − z∗

1

∣∣]h∗
1 (z∗

1 )d z∗
1 d z̃, (41)

Using a change of variables with ž = z̃ +∆z we have

H1(z −∆z) =
∫ z

ž=−∞

∫ ∞

z∗1 =−∞
λ

[−λ ·2
∣∣ž −∆z − z∗

1

∣∣]h∗
1 (z∗

1 )d z∗
1 d z̃. (42)

By the assumption of constant target income response, in the vicinity of the tax kink, target

incomes under the linear tax T1(z) are lower than under T0(z) by ∆z. That is, z∗
1 = z∗

0 −∆z.

Substituting this into (42) gives

H1(z −∆z) =
∫ z

ž=−∞

∫ ∞

z∗0 =−∞
λ

[−λ ·2
∣∣ž −∆z − z∗

0 +∆z
∣∣]h∗

1 (z∗
0 −∆z)d z∗

0 d z̃ (43)

=
∫ z

ž=−∞

∫ ∞

z∗0 =−∞
λ

[−λ ·2
∣∣ž − z∗

0

∣∣]h∗
1 (z∗

0 −∆z)d z∗
0 d z̃. (44)

Because target income rankings are preserved under a constant shift, z∗
1 = z∗

0 −∆z implies

H∗
0 (z∗

0 ) = H∗
1 (z∗

1 ) = H∗
1 (z∗

0 −∆z). (45)

and differentiating with respect to z∗
0 gives

h∗
0 (z∗

0 ) = h∗
1 (z∗

0 −∆z). (46)

7
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Substituting (46) into (44) gives the first equation in the lemma, (37), and differentiating (37)

with respect to z gives (38), proving the lemma.

We now define the “bunching mass function” b(ϵ) around the kink at k as the excess mass

at income k +ϵ relative to the counterfactual density that would arise under the local linear tax

function, i.e.,

b(ϵ) =
h(k +ϵ)−h0(k +ϵ) if ϵ< 0,

h(k +ϵ)−h1(k +ϵ) if ϵ> 0.
(47)

In what follows, we prove two lemmas about the bunching mass function b(ϵ), which

facilitate our numerical estimation and demonstrate that we can recover the target income

response ∆z for given distributions H0(z) and H(z).

By construction, the integral of the bunching mass function is equal to the vertical distance

between the income CDFs at k (Figure 1):

∫ ∞

−∞
b(ϵ)dϵ=

∫ k

−∞
(h(z)−h0(z))d z +

∫ ∞

k
(h(z)−h1(z))d z

=
∫ k

−∞
h(z)d z −

∫ k

−∞
h0(z)d z +

∫ ∞

k
h(z)d z −

∫ ∞

k
h1(z)d z

=
∫ ∞

−∞
h(z)d z︸ ︷︷ ︸
=1

−
∫ k

−∞
h0(z)d z︸ ︷︷ ︸

=H0(k)

−
∫ ∞

k
h1(z)d z︸ ︷︷ ︸

=1−H1(k)

= H1(k)−H0(k) = B. (48)

Our next lemma characterizes the bunching mass function b(ϵ) explicitly. We focus on

the case where ϵ > 0, as the case where ϵ < 0 can be handled symmetrically with identical

techniques. Here it is useful to define some additional notation. Recall from Proposition 1

thatΘ (z|n) denotes the set of incomes that utility-dominate z̃ for a taxpayer of type n:

Θ (z̃|n) :=
{

z
∣∣∣u (

z −T (z), z
∣∣n)≥ u

(
z̃ −T (z̃), z̃

∣∣n)}
.

It is also useful to define the (weakly larger) set of incomes that would dominate z̃ under the

counterfactual linear income tax Ti (z) (where i = 0 or i = 1) which we denoteΘi (z̃|n):

Θi (z̃|n) :=
{

z
∣∣∣u (

z −Ti (z), z
∣∣n)≥ u

(
z̃ −Ti (z̃), z̃

∣∣n)}
. (49)

Using equation (17) from the text, under Assumption 1 the measure ofΘi takes a simple form:

∣∣Θi (z̃|n)
∣∣= 2

∣∣z̃ − z∗
i (n)

∣∣ . (50)

8
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Finally, for the purposes of the proof below we define the function δ(ϵ, z∗
1 ) as the difference

in the size of the dominating income set for a taxpayer targeting z∗
1 under the kinked tax T (z)

relative to the linear tax T1(z):

δ(ϵ, z∗
1 (n)) := ∣∣Θ1 (k +ϵ|n)

∣∣− ∣∣Θ (k +ϵ|n)
∣∣. (51)

The definitions of Θ, Θ1, and δ are illustrated in Figure A6. We can now characterize the

bunching mass function b(ϵ) as follows.

Lemma 2. The bunching mass function at income k +ϵ> k under the uniform sparsity model is

b(ϵ) =
∫ k+ϵ/2

−∞
λexp

[−λ2
∣∣k +ϵ− z∗

1

∣∣](
exp[λδ(ϵ|z∗

1 )]−1
)

h∗
1 (z∗

1 )d z∗
1 . (52)

Proof. Using equation (13) from the text, expressed using target incomes z∗
1 as our index of

types, we can write the observed income density at income k +ϵ as

h(k +ϵ) =
∫ ∞

−∞
g

(
k +ϵ|z∗

1

)
h∗

1

(
z∗

1

)
d z∗

1 (53)

=
∫ ∞

−∞
λexp

[−λ ∣∣Θ(k +ϵ|z∗
1 )

∣∣]h∗
1

(
z∗

1

)
d z∗

1 (54)

=
∫ ∞

−∞
λexp

[−λ(∣∣Θ1(k +ϵ|z∗
1 )

∣∣−δ(ϵ, z∗
1 )

)]
h∗

1

(
z∗

1

)
d z∗

1 (55)

=
∫ ∞

−∞
λexp

[−λ ∣∣Θ1(k +ϵ|z∗
1 )

∣∣]exp
[
λδ(ϵ, z∗

1 )
]

h∗
1

(
z∗

1

)
d z∗

1 , (56)

where the second line substitutes the expression for the type-conditional density under

uniform sparsity from Proposition 2, the third line uses the definition of δ(ϵ, z∗
1 ) in (51), and the

final line uses equation (50).

Similarly, we can express the counterfactual income density under the linear tax T1(z) as

h1(k +ϵ) =
∫ ∞

−∞
λexp

[−λ ∣∣Θ1(k +ϵ|z∗
1 )

∣∣]h∗
1

(
z∗

1

)
d z∗

1 . (57)

Using the definition in (47), we find b(ϵ) by subtracting equation (57) from (56). Using the

expression for
∣∣Θ1(z̃|z∗

1 )
∣∣ in equation (50), this can be written as

b(ϵ) =
∫ ∞

−∞
λexp

[−λ2
∣∣k +ϵ− z∗

1

∣∣](
exp[λδ(ϵ|z∗

1 )]−1
)

h∗
1 (z∗

1 )d z∗
1 . (58)

Any taxpayer with a target income z∗
1 ≥ k + ϵ/2 prefers income k + ϵ to any income below

k. As a result, their set of incomes dominating k + ϵ is the same as the income set that would

dominate k +ϵ under the counterfactual linear tax T1(z). That is,Θ(k +ϵ|z∗
1 ) ≡Θ1(k +ϵ|z∗

1 ), and

9
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thusδ(ϵ|z∗
1 ) = 0, for z∗

1 ≥ k+ϵ/2. As a result, in equation (58) the integrand is zero for z∗
1 ≥ k+ϵ/2,

so this equation reduces to the one in the lemma.

Lemmas 1 and 2 enable us to prove that under the uniform sparsity model, for a given

counterfactual income distribution H0(z), an observed income distribution H(z) can be

consistent with only one target income response ∆z. By construction of b(ϵ) (and equation 48),

the integral
∫ ∞
−∞ b(ϵ)dϵ is finite, and thus so is the portion in the positive domain,

∫ ∞
0 b(ϵ)dϵ.

By Lemma 2, the bunching mass function is strictly positive (b(ϵ) > 0 for all ϵ). Together, these

facts imply that the integral
∫ ∞
ϵ b(ϵ)dϵ converges to zero as ϵ → ∞. That is, for any desired

precision ε∗ > 0, there is a ϵ such that
∫ ∞
ϵ b(ϵ)dϵ< ε∗. And from the definition of b(ϵ) we have∫ ∞

ϵ
b(ϵ)dϵ=

∫ ∞

ϵ
[h(k +ϵ)−h1(k +ϵ)]dϵ

= 1−H
(
k +ϵ)− (

1−H1
(
k +ϵ))

= H1
(
k +ϵ)−H

(
k +ϵ) . (59)

Thus by choosing ϵ sufficiently large, we can ensure that H1(k+ϵ)−H(k+ϵ) < ε∗, implying that

the observed income distribution H(z) approximates the counterfactual income distribution

H1(z) to within ε∗. By assumption of our proposition, the target income response∆z is constant

in a sufficiently wide region around the tax kink; we now exploit that assumption to assert that

it is constant in a region that includes k +ϵ. By Lemma 1, we can thus write

H1(k +ϵ−∆z)−H0(k +ϵ) = 0 =⇒ ∣∣H
(
k +ϵ−∆z

)−H0
(
k +ϵ)∣∣< ε∗. (60)

For known H(z) and H0(z), this equation can be used to identify ∆z within an arbitrary degree

of precision controlled by ε∗. This method depends on λ only through the speed at which H(z)

converges to H1(z) above k, and thus provided one chooses a sufficiently high ϵ̄ to achieve the

desired degree of precision, variation in λ has an arbitrarily small effect on the estimated B ,

and thus on the estimated ∆z. It is in this sense that ∆z is separately identified from λ under

the uniform sparsity model. The intuition for this result stems from the fact that the elasticity is

identified entirely by the integral of the bunching mass function—B—which is not affected by

the value of λ.

Having identified ∆z, we have also identified H1(z) and h1(z). Our next lemma

demonstrates how the sparsity parameter λ can be identified from the observed income

density h(z) and the target income response ∆z.

10
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Lemma 3. Under the uniform sparsity model, the density at the kink satisfies

h(k) =λB +
∫ k

−∞
h∗

0 (z∗
0 )λexp

[−λ2|k − z∗
0 |

]
d z∗

0 +
∫ ∞

k
h∗

1 (z∗
1 )λexp

[−λ2|k − z∗
1 |

]
d z∗

1 . (61)

Proof. Any agent with a target income z∗
0 < k prefers income k to any z > k, regardless of

whether a kink is present, and therefore the contribution of such agents to the observed income

density h(z) is equal to their contribution to the counterfactual density h0(z). Similarly, any

agent with a target income z∗
1 > k prefers income k to any z < k, and therefore their contribution

to h(z) is equal to their contribution to h1(z).

Finally, for any agent with z∗
1 < k < z∗

0 , or equivalently, k < z∗
0 < k +∆z, their preferred

income under the kink is k, meaning the dominating income region is just a single value, k,

implying that their type-conditional density at k is λexp[−λ ·0] =λ. Combining these facts, the

observed density at k can be written

h(k) =
∫ k

−∞
h∗

0 (z∗
0 )λexp

[−λ2|k − z∗
0 |

]
d z∗

0 +
∫ ∞

k
h∗

1 (z∗
1 )λexp

[−λ2|k − z∗
1 |

]
d z∗

1

+λ
∫ k+∆z

k
h∗

0 (z∗
0 )d z∗

0 . (62)

Note that the integral in the final term is equal to λ (H0(k +∆z)−H0(k)), and by Lemma 1, this

is equal to λ (H1(k)−H0(k)) =λB . This proves the lemma.

Next, we produce the following lemma, which demonstrates that when the observed income

density under a linear tax can be written as a polynomial, then the density of target incomes

under that tax can also be written as a polynomial, with a simple relationship between the

coefficients of the two polynomials.

Lemma 4. Under the uniform sparsity model, if the Taylor approximation around income z̃ of

the observed income density under a given linear tax Ti (z) has coefficients α j , i.e.,

hi (z) ≈α0 +α1(z − z̃)+ α2

2
(z − z̃)2 + . . . , (63)

then the Taylor approximation of the (unobservable) density of target incomes, h∗
i (z), around z̃

has coefficients α∗
j , where

α∗
j =α j −

α j+2

(2λ)2
. (64)

Proof. Under the uniform sparsity model, the density of observed and target incomes are

related by the following equation (the subscript i indexing the linear tax is suppressed for

11
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readability, as the result turns out not to depend on the tax, provided that it is linear):

h(z) =
∫ z

z∗=−∞
λexp

[−2λ
(
z − z∗)]

h∗(z∗)d z∗+
∫ ∞

z∗=z
λexp

[−2λ
(
z∗− z

)]
h∗(z∗)d z∗. (65)

Employing a change of variables in each integral, with x = z−z∗ (so d x
d z∗ =−1) and y = z∗−z (so

d y
d z∗ = 1), we can write

h(z) = 1

2

{∫ ∞

x=0
2λexp[−2λx]h∗(z −x)d x +

∫ ∞

y=0
2λexp

[−2λy
]

h∗(z + y)d y

}
. (66)

Intuitively, this equation states that the observed density at z is a weighted average of the

target income density around z, where the weights decline exponentially (with parameter 2λ)

as the target income gets farther from z in either direction.

This insight allows us to approximate the relationship between h(z) and h∗(z) around z̃

arbitrarily well using Taylor expansions. Let ĥ∗(z) denote the Taylor expansion of the target

income density h∗(z) around income z̃:

ĥ∗(z) =α∗
0 +α∗

1 (z − z̃)+ α∗
2

2
(z − z̃)2 + . . . (67)

where α∗
0 = h∗(z̃), α∗

1 = h∗′(z̃), α∗
2 = h∗′′(z̃), etc., with “∗” superscripts indicating that these are

the Taylor expansion coefficients of the target income density. Substituting this approximation

into equation (66) evaluated at z = z̃, we have

h(z̃) = 1

2

{∫ ∞

x=0
2λexp[−2λx]

(
α∗

0 −α∗
1 x + α∗

2

2
x2 − α∗

3

3!
x3 + α∗

4

4!
x4 + . . .

)
d x+∫ ∞

y=0
2λexp

[−2λy
](
α∗

0 +α∗
1 y + α∗

2

2
y2 + α∗

3

3!
y3 + α∗

4

4!
y4 + . . .

)
d y

}
. (68)

12
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Collecting terms by coefficients, we can rewrite this as

h(z̃) = α∗
0 ·

1

2

{∫ ∞

x=0
2λexp[−2λx]d x +

∫ ∞

y=0
2λexp

[−2λy
]

d y

}
+α∗

1 ·
1

2

{
−

∫ ∞

x=0
2λexp[−2λx] xd x +

∫ ∞

y=0
2λexp

[−2λy
]

yd y

}
+ α∗

2

2
· 1

2

{∫ ∞

x=0
2λexp[−2λx] x2d x +

∫ ∞

y=0
2λexp

[−2λy
]

y2d y

}
+ α∗

3

3!
· 1

2

{
−

∫ ∞

x=0
2λexp[−2λx] x3d x +

∫ ∞

y=0
2λexp

[−2λy
]

y3d y

}
+ α∗

4

4!
· 1

2

{∫ ∞

x=0
2λexp[−2λx] x4d x +

∫ ∞

y=0
2λexp

[−2λy
]

y4d y

}
+ . . .

All terms multiplying odd-numbered Taylor coefficients (α∗
1 , α∗

3 , etc.) consist of two equal

integrals with opposite signs, and they therefore cancel. The term multiplying α∗
0 contains

two identical integrals, each of which is an integral over an exponential density function, and

therefore they each integrate to 1. More generally, terms multiplying even-numbered Taylor

coefficients (α∗
0 , α∗

2 , etc.) consist of two equal integrals, and therefore their average is equal to

either of them. Putting this together, we can simplify the above expression to

h(z̃) =α∗
0 +

α∗
2

2!
·
∫ ∞

x=0
2λexp[−2λx] x2d x + α∗

4

4!
·
∫ ∞

x=0
2λexp[−2λx] x4d x + . . . (69)

We can now make use of a convenient property of exponential distributions: when x is

exponentially distributed with rate parameter β, the expectation of xm is m!/βm . Each of the

above integrals represents such an expectation, with x exponentially distributed with rate

parameter 2λ. Therefore we can rewrite equation (69) as

h(z̃) =α∗
0 +

α∗
2

2!
· 2!

(2λ)2
+ α∗

4

4!
· 4!

(2λ)4
+ . . .

=α∗
0 +

α∗
2

(2λ)2
+ α∗

4

(2λ)4
+ . . .

=α∗
0 +

∞∑
j=1

α∗
2 j

(2λ)2 j
. (70)

We do not observe the coefficients α∗
j because they are features of the unobserved

distribution of target incomes. But we do observe features of h(z). And the two sets of

coefficients can be related using equation (70).

Letting ĥ(z) denote the Taylor expansion around z̃ of the observed income density with
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coefficients α0 = h(z̃), α1 = h′(z̃), α2 = h′′(z̃), etc., we have, from equation (70),

α0 = h(z̃) =α∗
0 +

∞∑
j=1

α∗
2 j

(2λ)2 j
. (71)

To find α1, we differentiate equation (70) with respect to z̃, noting that the coefficients α∗
j

are functions of z̃:

α1 = h′(z̃) =α∗′
0 (z̃)+

∞∑
j=1

α∗′
2 j (z̃)

(2λ)2 j
. (72)

By definition of the Taylor expansion, α∗′
j (z̃) =α∗

j+1(z̃), so we have

α1 =α∗
1 +

∞∑
j=1

α∗
2 j+1

(2λ)2 j
. (73)

Similarly,

α2 =α∗
2 +

∞∑
j=1

α∗
2 j+2

(2λ)2 j

= (2λ)2

( ∞∑
j=1

α∗
2 j

(2λ)2 j

)
. (74)

Combining equations (71) and (74), we have

α0 − α2

(2λ)2
=α∗

0 . (75)

By a similar process, it can be shown that

α1 − α3

(2λ)2
=α∗

1 , (76)

and more generally,

α j −
α j+2

(2λ)2
=α∗

j . (77)

This proves the lemma.

With this lemma, using the known densities h0(z) and h1(z) we can approximate the target

income densities h∗
0 (z) and h∗

1 (z) with an arbitrary degree of precision. We can then use Lemma

3 to compute λ.

This completes the proof that ∆z and λ are separately identified under the uniform sparsity

model.
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D Details of the conventional kink-based bunching estimator

We apply the conventional bunching estimator based on Saez (2010) to estimate the

income elasticity of the simulated data sets underlying Figure 9. We use as our baseline

the implementation described in Chetty et al. (2011), which builds on Saez (2010) by estimating

a counterfactual using a smoothed polynomial regression. Appendix F presents results using a

number of alternative implementations of the conventional approach.

This estimation procedure involves two steps, first estimating a counterfactual income

density based on the income density excluding data points near the kink, and then using the

counterfactual density to estimate the excess mass from which the elasticity is recovered. To

estimate the counterfactual density, we fit a polynomial of a specified degree to the observed

income density, excluding the data in a specified window around the kink, using the following

specification:

C j =
q∑

i=0
β0

i · (Z j )i +
Ru∑

i=Rl

γ0
i ·1[Z j = i ]+ϵ0

j . (78)

Here, q denotes the order of the polynomial, and Rl and Ru denote the lower and upper

bounds of the “bunching window” near the kink, which is excluded from the polynomial

estimation.35 When estimating the polynomial regression, we follow Chetty et al. (2011)

and impose an “integration constraint” such that the total count of observations across the

empirical distribution equals the integral of observations under the counterfactual density

across the plotted region.36

The second step is to compute the excess mass of incomes around the kink relative to this

counterfactual density. Using equation (78), we compute the counterfactual mass in each bin

within the bunching window, Ĉ 0
j . Subtracting this predicted mass from the observed density

yields the estimated excess number of individuals who report incomes near the kink relative to

this counterfactual distribution:

B̂ =
Ru∑

i=Rl

C j − Ĉ 0
j =

Ru∑
i=Rl

γ̂0. (79)

We then map this excess mass estimate to an estimated elasticity using the approximation from

35The convention in Chetty et al. (2011) is to set a symmetric bunching window, such that Rl = −Ru . We allow
for the possibility of an asymmetric bunching window, following the approach in Bosch, Dekker and Strohmaier
(2020), which we detail below.

36Kleven (2016) notes that imposing an integration constraint may bias the elasticity estimate: “This approach
may introduce bias, especially in relatively flat distributions in which interior responses do not affect bin counts
(except at the very top of the distribution away from the threshold being analyzed). It would be feasible to
implement a conceptually more satisfying approach that does not have this potential bias, but for the reasons
stated above, it will matter very little in most applications.” As we discuss below and in Appendix F, our results
confirm that the integration constraint introduces bias, and that the introduced bias may be substantial.
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Chetty et al. (2011):

ê ≈ B̂

z∗ ·h0(z∗) · log( 1−t0
1−t1

)
. (80)

Standard errors for ê are estimated using a bootstrap procedure. We resample with

replacement from the underlying distribution of firms 1000 times, re-estimating the elasticity

each time, and defining the standard error as the standard deviation of the distribution of ê

estimates.

This conventional estimation method relies on three parameter inputs: the lower and

upper bounds of the bunching window (Rl and Ru) and the order of the polynomial (q). These

are often left to the discretion of the researcher to be chosen via “visual inspection.” We instead

follow the algorithmic approach proposed in Bosch, Dekker and Strohmaier (2020), which

allows the polynomial order and the bunching region to be informed by the data itself.37

E Robustness to polynomial degree

Beginning with our simulation-based results, Figure A7 reproduces the estimations in Figure 9

assuming different polynomial degrees for the ability density (Panel (a)) or the counterfactual

density outside the bunching window (Panel (b)). Our proposed method is not sensitive to

misspecification in the polynomial order: the estimated elasticity is close to the true value of

the data generating process, e0 = 0.3, for each specification. In contrast, under the conventional

bunching estimator, greater flexibility (i.e., a higher polynomial degree) causes the best fit of

the counterfactual density to be “pulled upward” into the bunching mass, underestimating the

bunching mass and producing a lower estimate of the elasticity. Each estimate also reports the

Bayesian Information Criteria, which is minimized under the linear fit in each case.

37This approach proceeds in five steps: (1) Estimate equation (78) with no bunching window—so that the
polynomial estimation excludes only the bins adjacent to the kink—for a range of polynomial orders, retaining the
specification that minimizes the Bayesian Information Criterion (BIC). (2) Define the lower bound of the bunching
window as the leftmost set of two adjacent bins below the threshold where the actual count in each bin exceeds
the 95 percent confidence interval of the predicted bin counts from equation (78), and define the upper bound
using an analogous procedure to the right of the kink. (3) Repeat steps (1) and (2), widening the bunching window
by one bin above and below the kink each time. Each such iteration produces a candidate set of bounds for a
bunching window. (4) From the resulting distributions of candidate bounds, choose the modal lower bound and
upper bound to define the preferred bunching window. (5) Using this preferred bunching window, re-estimate the
final counterfactual regression with the preferred polynomial order as in Step (1).
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F Alternative specifications for the conventional approach

In Section 3, we compare the elasticities produced under our approach to the elasticity

estimates produced under the approach developed in Chetty et al. (2011), one of the most

widely used conventional bunching estimators. This approach involves fitting a flexible

polynomial to the observed data, excluding the observations in the bunching region, and uses

this to construct a single counterfactual which represents the counterfactual distribution that

would occur if the lower tax rate below the kink threshold also applied above the threshold. As

we discuss in the main text, this approach imposes an “integration constraint” such that the

total integral of population across the empirical distribution equals the total integral under

the counterfactual distribution. The integration constraint makes the assumption that all of

the bunching mass comes from the income distribution in the underlying histogram and rules

out the possibility that any mass shifts beyond the region depicted in the histogram. Given the

counterfactual of Chetty et al. (2011) assumes that the lower tax rate below the kink applies

above the kink, this means that the entirety of the bunching mass gets reallocated above

the kink into the income bins depicted in the histogram. The practical implication of this is

that the counterfactual density is shifted upward in order to ensure that the total integral of

population across the empirical distribution equals the total integral under the counterfactual

distribution.

In this section, we compare our estimator to other conventional bunching estimators that

differ in how they construct counterfactuals, namely Saez (2010) and Mortenson and Whitten

(2016), the working paper that preceded Mortenson and Whitten (2020). We illustrate the

differences between these approaches in Figure A8a. The approach developed in Saez (2010)

constructs two linear counterfactuals on either side of the kink with the assumption that the

densities are uniformly distributed on either side of the threshold. In order to construct the

counterfactual, the approach takes the average value of the densities that occur outside of the

bunching window and extrapolates that density through to the kink threshold. This is done on

either side of the kink resulting in two counterfactuals. An alternative approach is developed

in Mortenson and Whitten (2016) who construct a piecewise linear counterfactual on either

side of the kink, in a similar vein to Saez (2010), but to allow for that counterfactual to take

into account the slope of the observed densities on either side of the kink. Finally, we also

consider an implementation of the approach in Chetty et al. (2011) where we do not impose

the “integration constraint.” This allows for the possibility that the bunching mass may be

reallocated to income bins beyond the region depicted in the histogram, which would cause

the total integral under the counterfactual distribution to be smaller than the total integral

of population across the empirical distribution. The practical implication of this is that the
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counterfactual distribution is shifted downward relative to the approach which imposes the

integration constraint, as is depicted in Figure A8a.

Next, we compare the elasticities produced under these four approaches to our estimates

for varying values of the lumpiness parameter. We report these results in Figure A8b. Imposing

the integration constraint in the Chetty et al. (2011) approach produces lower elasticities than

when the constraint is not imposed. Intuitively, by imposing the constraint, the counterfactual

density is shifted upward, which causes the estimate of bunching to fall, leading to a lower

elasticity. The Mortenson and Whitten (2016) elasticities are very similar to the Chetty et al.

(2011) elasticities without the integration constraint. In that sense, the specification is nearly

identical to the counterfactual specification in Mortenson and Whitten (2016), apart from the

fact that the latter approach estimates two counterfactuals on either side of the threshold,

thereby allowing for a different slope on the counterfactual on either side of the kink threshold.

The visual similarity between these counterfactuals is evident in Figure A8a. Out of all of

the conventional approaches, the Saez (2010) approach produces the largest elasticities. The

reason for this becomes evident when considering the counterfactuals produced in Figure

A8a. Given the empirical distribution slopes downwards, by assuming uniformly distributed

densities, the Saez (2010) approach produces a counterfactual that is significantly lower than

the other counterfactuals in the bunching region above the kink, leading to a higher measure

of bunching, and a higher estimated elasticity.

For smaller values of the lumpiness parameter, only Mortenson and Whitten (2016) and the

Chetty et al. (2011) approach without the integration constraint can recover the true elasticity.

However, for large values of the lumpiness parameter, not even these approaches are able

to recover the true elasticity and exhibit a significant downward bias, whereas our approach

can consistently recover the elasticity, irrespective of the extent of lumpiness in the observed

empirical distribution.

G Comparison to the conventional notch-based bunching

estimator

Kleven and Waseem (2013) (hereafter KW) proposes a method for estimating the elasticity of

taxable income based on bunching around a notch in the tax schedule. Here we apply that

method to simulated data with sparsity-based frictions. Figure A9 plots an income histogram

for one simulation round with parameters identical to those in Figure 9, except in this case we

impose a notch value of $1000.

Panel (a) displays the results of applying our maximum likelihood estimation with frictions.
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This method delivers estimates of the elasticity and the lumpiness parameter that are close to

the parameters of the data-generating process (e0 = 0.3 and µ0 = 10), with confidence intervals

that contain the true parameters.

Panel (b) displays the results of applying the KW notch-based estimator. In this model, the

presence of taxpayers at incomes that are strictly dominated (i.e., at which post-tax income

is lower and labor effort—as evidenced by pre-tax income—is higher than at k) is explained by

assuming that a share a∗ of taxpayers face frictions that render them unresponsive to the notch.

According to this model, the structural or long-run elasticity is a function of the bunching mass

that would be measured on a longer horizon when all taxpayers are responsive to the notch.

Thus, the model proceeds by first estimating the bunching mass relative to the counterfactual

frequency at k—denoted b in the figure—then scaling this estimate up by 1/(1− a∗) to adjust

for under-responsiveness from frictions. The resulting rescaled mass is used to compute the

structural elasticity.

Following KW, we compute the bunching mass b by visually specifying a lower bound zL

below which no excess bunching mass is apparent. We then compute an upper bound zU by

iteration to satisfy two conditions: the counterfactual frequency (plotted in orange in Panel

(b)) is the quintic best-fit to the empirical histogram outside the excluded bunching window

[zL , zU ], and the excess bunching mass in the interval [zL ,k] fills the cumulative gap between

the empirical histogram and the counterfactual frequency across the interval [k, zU ].

Having identified the counterfactual frequency, we can compute a∗—the share of

unresponsive taxpayers—as the ratio of the empirical histogram to the counterfactual

density in the dominated income range.38 This value is reported in Panel (b). Rescaling the

bunching estimate b by 1/(1− a∗) and multiplying by the income bin width ($2,500 in these

simulations) we get an estimate of the income change induced by the marginal buncher (∆z in

the notation of KW) from which we compute the elasticity e using KW equation equation (5).39

The resulting elasticity estimate is ê = 0.61—a value that is higher than the elasticity of the

data-generating process, e0 = 0.3.40 This overestimation comes from a misinterpretation of

the of the presence of mass in the dominated income range. In the presence of sparsity-based

friction, that mass is explained by the fact that some agents with an opportunity in the

38Under the tax parameters of this simulation, the upper bound of the dominated range zD satisfies k −T0(k) =
zD −T1(zD ), implying zD = 301,250. This region is small relative to the tax systems considered in KW, which have
larger implied notch values.

39KW uses alternative notation in which the piecewise-linear tax schedule is denoted T (z) = t · z + (∆T +∆t · z) ·
1{z > k}. Our simulated tax system with T (z) = 0.1 · z for z ≤ k and T (z) = 31,000+ 0.2 · (z −k) for z ≤ k implies
values of t = 0.1, ∆t = 0.1, and ∆T =−29,000 using their notation.

40Re-running this estimation procedure on 1000 rounds of simulated data, we find an average estimated value of
0.78; the distribution of estimates has right skew, reflecting a right tail of high estimates that arise from simulation
variation where the density in the dominated range is high, and thus the rescaling factor 1/(1−a∗) is large.
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dominated region do not happen to draw any other opportunities that are more desirable; it

is not an indication that some share of agents are unresponsive, despite having an available

dominating option. This distinction can be seen sharply in Panels (c) and (d) of Figure 8, which

plots simulated income distributions around a notch with alternative lumpiness parameters.

When frictions increase, the income density in the dominated region becomes higher than

the flat counterfactual density because the kink-induced compression of incomes toward

k overcomes the notch-induced depression in the density, which becomes diffuse when

lumpiness is high. In such a scenario, the fraction of unresponsive taxpayers in the KW model

would not be well-defined; taken literally, the calculation of a∗ would result in a negative value.

Together, these findings suggest that our estimation method is complementary to that

of KW. The KW method is well-suited to settings where a subset of agents are unresponsive

to a notch due to some frictions, and in such settings it provides a useful nonparametric

quantification of those frictions in the form of the unresponsiveness share a∗. On the other

hand, in settings where sparsity-based frictions are present, our estimation method can be

used to quantify the elasticity and an alternative quantification of frictions in the form of the

lumpiness parameter.

H Details of the South African tax system

The corporate income tax schedule for small business corporations and the personal income

tax schedule are displayed in Figures A11a and A11b for selected years. In this appendix, we

describe these tax systems and their rules in greater detail.

In South Africa, small business corporations (SBCs) face a progressive schedule of marginal

tax rates that are lower than those applied to other firms. Figure A11a displays the schedule

of marginal tax rates in 2018. Table A1 reports the full schedule of SBC tax rates in each year

from 2010 to 2018. In addition to qualifying for lower tax rates, SBCs are also eligible for an

accelerated depreciation allowance, and they are granted more generous deductible allowances

for movable assets.

Businesses are eligible to register as an SBC if they meet each of the following requirements:41

• The business is a close corporation, co-operative, private company or personal liability

company.42

41More information on these requirements can be found in an interpretation note provided by SARS at
https://www.sars.gov.za/wp-content/uploads/Legal/Notes/LAPD-IntR-IN-2018-08-Arc-08-IN9-
Issue-6-Small-Business-Corporations.pdf.

42A close corporation is a firm that was required to have 10 or less owners. After 2019, new companies could no
longer incorporate as close corporations, but previously registered close corporations could maintain this form.
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• All shareholders are natural persons (i.e, individuals and not companies or other legal

structures) during the year of assessment.

• No shareholders may hold any shares or hold any interest in any other company, subject

to certain exemptions. Some of these exemptions include listed companies, collective

investment schemes and venture capital companies.

• The gross income of the company must not exceed R20 million for the year of assessment.

• The company may not be a personal service provider.43

• Investment income and income from rendering personal services may account for a

maximum of 20 percent of all receipts, accruals and capital gains.44

SBCs account for approximately 26 to 31 percent of the total number of corporate tax filings

between 2010 and 2018. Table A2 compares SBCs to other types of businesses in South Africa.

It reports summary statistics for three groups of firms: non-SBCs, SBCs and size-matched

non-SBCs, where the latter group consists of non-SBC businesses with revenues below the

R20 million SBC eligibility threshold. Size-matched non-SBCs therefore comprise two types of

firms: (i) firms who are eligible to register as an SBC but do not, either intentionally or because

they are are unaware of the SBC program, and (ii) firms who are eligible to register as an SBC

under the gross revenue requirement but who do not meet one of the other requirements listed

above. We are unable to distinguish between these two types of firms in our data. While SBCs

account for 38 percent of all companies, size-matched non-SBCs account for over half of all

companies we observe. This discrepancy can be accounted for by recognizing that, since firms

are not taxed when making losses and the number of loss-making firms greatly outnumbers the

number of profit-making firms, many SBC-eligible firms do not register given that they make

a loss and as such there is no incentive to SBC status. The size of the SBC sector is therefore a

subset of the eligible SBC population, which would be closer in size to the total number of all

small- and medium-sized enterprises (SMMEs), which stands at over 90 percent of all formally

registered companies.45

The share of SBCs has risen over time. Figure A10a shows a clear upward trend since 2013,

with SBCs accounting for over 31 percent of all tax filings in 2018. While large in number, the

contribution of SBC tax revenue to total corporate income tax revenue, as shown in Figure A10b,

43Personal service providers refer to companies that have less than 3 employees and where more than 80 percent
of the company income is derived from one client.

44Personal services refer to any company services performed personally by any person who holds an interest in
that company when that company employs less than 3 employees. In this scenario, the tax authority deems the
income being generated to be a function of the personal skill of that individual and not the company.

45This only takes into account formally registered firms. Given South Africa’s large informal economy, the true
number of SMMEs will be even larger.
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is more modest, with SBCs accounting for 3 percent of overall corporate tax revenue on average

during our sample period. This share has however increased since 2014, rising from around

2.5 percent to 4 percent. The jump in share of tax revenue from SBCs between 2013 and 2014

coincides with the year in which the gross income requirement for SBC eligibility was increased

from R14 million to R20 million; this allowed a larger number of companies to register as SBCs

and therefore increased the fraction of corporate tax revenue originating from SBCs.

Personal income taxes represent the single largest source of tax revenue in South Africa.

In 2017, the personal income tax base accounted for 34.2 percent of total tax revenue in the

country. This figure is considerably higher than the OECD average of 23 percent, nearly twice

as large as the average share for Africa (18 percent) and more than three times as large as the

average share in Latin America (9.2 percent).

The personal income tax base comprises both wage-earners and the self-employed and

extends both to personal earned income (wage and non-wage) and fringe benefits. Capital

gains are taxed separately. Taxes are imposed at the individual level, i.e., spousal income does

not affect individual tax liability. Deductions are permitted from taxable income; the most

common deductions are from retirement contributions and expenses (such as travel expenses)

incurred when producing income.

I Appendix Tables and Figures
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Figure A1: Bunching patterns under a frictionless model
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Panel (a) plots income choices for discrete types in the presence of a kink, for a uniform type distribution. Black
points denote types who choose the same income under the linear tax T0(z) and the kinked tax schedule. Red
points denote types who bunch at the bracket threshold k under the kinked tax schedule; their counterfactual
income choices under T0(z) are plotted in light red for reference. Blue points denote types who choose incomes
above the threshold under the kink. Hollow blue points denote agents whose counterfactual incomes under T0(z)
lie outside the displayed range of incomes. The lower portion of Panel (a) displays the observed probability density
function from these choices. Panel (b) translates to the case of continuous types, which exhibits an atom of mass
at the threshold k and a jump in the density around that threshold, due to the compression of incomes in response
to the higher marginal tax rate above the kink. Panels (c) and (d) are the same as Panels (a) and (b), but in the
presence of a tax notch.
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Figure A2: Utility from income choices around a tax notch
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(c) Indirect utility function (type b)
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This figure is analogous to Figure 4, but in the presence of a notch, which produces a discontinuity in the indirect
utility function (Panels (c) and (d)). In the case of type c, the notch produces a non-monotonic indirect utility
function with two local maxima (Panel (d)).
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Figure A3: Type-conditional income density around a notch
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This figure is analogous to Figure 5, but in the presence of a notch. As shown in Panel (b), when the indirect
utility function has multiple local maxima, the dominating income range may be a disjoint set, in which case the
type-conditional density is multimodal.
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Figure A4: Quadratic approximations of utility

(a) Indirect utility vs. quadratic approximation
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(b) Type-conditional income density vs. quadratic-utility
approximation
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This figure illustrates the quantitative effect of imposing Assumption 1. Panel (a) plots exact indirect utility
under a linear tax for the specification used in the simulations from Section 3, wherein taxpayers have constant
elasticity of taxable income, and compares it to the quadratic approximation arising from the second-order Taylor
approximation of that indirect utility around the taxpayer’s target income. The approximation can be seen to be
quite accurate across incomes near the target. Panel (b) plots the type-conditional income density under the linear
tax and compares it to the density produced by the quadratic approximation. This approximation is extremely
accurate, because the quadratic approximation in Panel (a) only diverges meaningfully from true utility at incomes
far from the target, which are very unlikely to be chosen from the opportunity set.
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Figure A5: Joint identification of elasticity and lumpiness estimates

(a) Joint distribution of ê and µ̂ estimates
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(b) Income densities for different combinations of e and µ
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In Panel (a), each blue point plots the combination of parameter estimates (ê, µ̂) from one round of simulated
data like that in Figure 9a. Marginal histograms of the estimates are plotted for each axis. Panel (b) plots the
model-generated income density under the true parameters of the data-generating process, e0 = 0.3 and µ0 =
$10,000, as well as under the four different combinations corresponding to the colored square points in Panel (a).
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Figure A6: Illustration of dominated income regions with and without kink

Earnings

In
di

re
ct

 u
til

ity

This figure illustrates definitions introduced in the identification proof in Appendix C. Θ represents the set of
incomes that utility-dominate income opportunity z̃ in the presence of a tax kink at k. Θ1 represents the set of
incomes that dominate z̃ under the linear tax T1(z) which applies above the kink. δ represents the difference
between these sets.
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Figure A7: Estimated elasticities assuming different polynomial degrees

(a) Estimator with frictions
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(b) Conventional estimator
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Simulated data
Estimate: linear density (ê = 0.24; BIC = 587581)
Estimate: cubic density (ê = 0.22; BIC = 587735)
Estimate: quintic density (ê = 0.21; BIC = 587727)
Estimate: 10th degree density (ê = 0.18; BIC = 587655)

This figure reports the estimated elasticity for one round of simulated data, plotted in green, using both the
conventional approach with frictionless income choice (Panel a) and our estimation method with lumpy income
choice (Panel b), assuming different polynomial degrees for the counterfactual (or ability) density. The true ability
density of the data-generating process is linear, with a true elasticity value of e0 = 0.3.
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Figure A8: Counterfactuals and elasticity estimates using various conventional approaches and
our approach, for varying lumpiness parameters

(a) Alternative approaches to constructing counterfactuals
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(b) Comparing the elasticity estimates
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In Panel (a), we illustrate the counterfactuals produced under four different conventional bunching approaches
to estimating elasticities for a simulated dataset where µ = 10. In Panel (b), we simulate 100 rounds of data
using a constant elasticity e0 = 0.3 at each value of the lumpiness parameter µ0 shown in the plots. We then
estimate the elasticity ê using our estimation approach and four conventional bunching estimators. The vertical
lines indicate the 95 percent confidence intervals for the ê estimates. For the conventional methods, we adapt
the automated bunching window approach in Bosch, Dekker and Strohmaier (2020) in order to account for each
method’s approach to constructing a counterfactual distribution.
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Figure A9: Elasticity estimation based on Kleven and Waseem (2013)

(a) Simulated data with notch, estimated using our proposed model with frictions
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(b) Estimation based on Kleven and Waseem (2013)
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Both panels plot the same round of simulated data with sparsity-based frictions, using an elasticity of e0 = 0.3 and
a lumpiness parameter of µ0 = 10, and a notch value of $1000; other tax parameters are the same as in Figure 9.
Panel (a) applies our maximum likelihood estimator with frictions. Panel (b) applies the Kleven and Waseem (2013)
notch-based bunching estimator. The vertical dashed line just above the bracket threshold indicates the upper
bound of the “dominated income region.” b is the average excess mass between between the visually specified
lower bound of the bunching window zL and the threshold k, in proportion to the average estimated counterfactual
frequency (shown in orange) in the dominated income region. a∗ is the empirical frequency in the dominated
region, as a share of the counterfactual density. zU represents the upper bound of the bunching region, which is
computed so that the missing mass equals the excess bunching mass.
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Figure A10: Small Business Corporation (SBC) prevalence and contribution to corporate
income tax revenue

(a) SBCs as a share of all firms

.26

.27

.28

.29

.3

.31
Sh

ar
e 

of
 a

ll 
fir

m
s

2010 2011 2012 2013 2014 2015 2016 2017 2018
Tax year

(b) SBCs contribution to total corporate income tax revenue
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Panel (a) shows the share of SBC tax filings relative to all corporate tax filings between tax years 2010 and 2018.
Panel (b) shows the share of corporate tax revenue contributed by SBC’s as a percentage of total tax revenue
between tax years 2010 and 2018. In 2014, the income ceiling for SBCs was raised from R14 million to R20 million,
generating a substantial increase in their contribution to total revenues. To calculate tax revenue, we sum up the
tax liability of firms. We do not observe whether a payment was made and as a result, the figure should be viewed
as indicative of taxes owed.
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Figure A11: Marginal Tax Rate Schedules in South Africa

(a) Tax Schedule for Small Business Corporations in 2017
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(b) Personal Income Tax schedule in 2017
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Panel (a) shows the marginal tax rate schedule for small business corporations in South Africa in 2017. The
horizontal axis is measured in South African rand (ZAR), and vertical dashed lines indicate bracket thresholds
where marginal tax rates change. Panel (b) shows the personal income taxation marginal tax rate schedule in 2017.
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Table A1: Small Business Corporation Tax Schedule, 2010–2018

Tax year Taxable income Marginal tax rate

2010 0 - 54,200 0%

54,200 - 300,000 10%

Above 300,000 28%

2011 0 - 57,000 0%

57,000 - 300,000 10%

Above 300,000 28%

2012 0 - 59,570 0%

59,570 - 300,000 10%

Above 300,000 28%

2013 0 - 63,556 0%

63,556 - 350,000 7%

Above 350,000 28%

2014 0 - 67,111 0%

67,111 - 365,000 7%

365,001 - 550,000 21%

Above 550,000 28%

2015 0 - 70,700 0%

70,700 - 365,000 7%

365,001 - 550,000 21%

Above 550,000 28%

2016 0 - 73,650 0%

73,651 - 365,000 7%

365,001 - 550,000 21%

Above 550,000 28%

2017 0 - 75,000 0%

75,001 - 365,000 7%

365,001 - 550,000 21%

Above 550,000 28%

2018 0 - 75,750 0%

75,751 - 365,000 7%

365,001 - 550,000 21%

Above 550,000 28%

This table indicates the small business corporation (SBC) graduated income tax system for the tax years 2010–2018.
Tax years run from April 1 to March 31.
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Table A2: Summary statistics for businesses filing corporate income tax returns, 2014–2018

Company type Non-SBC
Size Matched

Non-SBC SBC

Turnover (in R’000) 121,249.1 3,028.22 2,628.6

(521,791.0) (4,275.89) (3,531.4)

Expenses (in R’000) 33,713.74 1,684.13 1,244.78

(281,924.3) (2,632.84) (1,785.2)

Assets (in R’000) 73,928.56 3,422.88 1,264.86

(658,585.4) (16,459.2) (2,344.89)

Liabilities (in R’000) 51,659.0 2,231.0 673.0

(510,496.1) (13,190.15) (1,708.29)

Inventory (in R’000) 10,782.82 284.19 173.72

(69,005.84) (2,017.28) (651.83)

Cash (in R’000) 7,185.93 312.86 199.56

(47,614.75) (1,606.54) (630.77)

Net profit (in R’000) 5,280.92 92.31 125.68

(31,990.6) (1,066.98) (502.82)

Number of employees 90.75 4.97 3.93

(579.44) (19.11) (11.69)

Number of salaried directors 2.26 1.47 1.32

(5.64) (0.83) (0.62)

Taxable income (in R’000) -462.12 -346.43 6.39

(150,598.8) (3,541.95) (753.68)

Tax liability (in R’000) 1,510.64 49.41 30.56

(6,659.3) (176.17) (119.75)

% of firms with a salaried director 35.18% 13.70% 17.34%

% of firms with a tax practitioner 73.09% 71.12% 64.16%

Number of unique tax returns 137,872 653,755 457,198

Share of tax revenue 81.82% 12.69% 5.49%

Number of unique companies 41,289 238,830 172,440

Share of companies 9.12% 52.77% 38.10%

This table reports summary statistics for corporate income tax returns in South Africa between 2014 and 2018
for 3 groups of firms: “Non-SBCs,” “Size Matched Non-SBCs” and “SBCs.” “Size Matched Non-SBCs” represent
“Non-SBCs” with revenues below R20 million, the SBC eligibility threshold. “Size Matched Non-SBCs” and
“Non-SBCs” are mutually exclusive categories. Standard deviations are shown in parentheses.
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Table A3: Estimated bunching parameters: personal income taxes

(a) Parameter estimates from model with frictions

Elasticity of taxable income (e)

First kink Second kink Third kink

Wage earners 0.02 (0.02, 0.02) — —
Self-employed 0.53 (0.53, 0.54) 0.02 (0.02, 0.03) 0.03 (0.02, 0.03)

Lumpiness parameter (µ), in ZAR 1000s

First kink Second kink Third kink

Wage earners 0.9 (0.9, 0.9) — —
Self-employed 4.4 (4.3, 4.5) 1.8 (1.6, 1.9) 4.5 (4.1, 5.0)

As-if notch value (dT ), in ZAR 1000s

First kink Second kink Third kink

Wage earners 0.08 (0.07, 0.08) — —
Self-employed 0.31 (0.31, 0.31) 0.06 (0.04, 0.07) 0.02 (-0.01, 0.05)

(b) Parameter estimates from conventional bunching estimator

Elasticity of taxable income (e)

First kink Second kink Third kink

Wage earners 0.03 (0.03, 0.04) — —
Self-employed 0.44 (0.43, 0.45) 0.03 (0.03, 0.03) 0.02 (0.02, 0.02)

Panel (a) reports our maximum likelihood estimates of the elasticity of taxable income (e), the average distance
between income adjustment opportunities (µ) and the revealed preference (“as-if”) value of the change in tax
liability at each bracket threshold. The values of µ and dT are measured in ZAR 1000s. Results are reported
separately for the aggregate population, and for the subset of individuals who are wage earners and those who
are self-employed. Panel (b) reports the estimated elasticity (e) from the conventional bunching estimator, using
the method based on Chetty et al. (2011) and described in Appendix D.
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